Monte Carlo Simulation vs. Polynomial Chaos in Structural Analysis: A Numerical Performance Study

The present work revisits the computational performance of non-intrusive Monte Carlo versus intrusive Galerkin methods for large-scale stochastic systems in the framework of high performance computing environments. The purpose of this work is to perform an assessment of the range of the relative superiority of these approaches with regard to a variety of stochastic parameters. In both approaches, the solution of the resulting algebraic equations is performed with a combination of primal and dual domain decomposition methods implementing specifically tailored preconditioners.

[1]  Christian Soize,et al.  Polynomial chaos representation of a stochastic preconditioner , 2005 .

[2]  Muneo Hori,et al.  Three‐dimensional stochastic finite element method for elasto‐plastic bodies , 2001 .

[3]  R. Ghanem,et al.  Polynomial Chaos in Stochastic Finite Elements , 1990 .

[4]  Kok-Kwang Phoon,et al.  Convergence study of the truncated Karhunen–Loeve expansion for simulation of stochastic processes , 2001 .

[5]  H. M. Panayirci,et al.  Efficient solution for Galerkin-based polynomial chaos expansion systems , 2010, Adv. Eng. Softw..

[6]  Roger Ghanem,et al.  Numerical solution of spectral stochastic finite element systems , 1996 .

[7]  Manolis Papadrakakis,et al.  Parallel solution methods for stochastic finite element analysis using Monte Carlo simulation , 1999 .

[8]  O. Axelsson,et al.  Preconditioned Conjugate Gradient Methods , 1990 .

[9]  Hermann G. Matthies,et al.  Galerkin methods for linear and nonlinear elliptic stochastic partial differential equations , 2005 .

[10]  David R. Owen,et al.  Explicit solution to the stochastic system of linear algebraic equations (α1A1 + α2A2 + ⋯ + αmAm)x = b , 2006 .

[11]  H. Matthies,et al.  Hierarchical parallelisation for the solution of stochastic finite element equations , 2005 .

[12]  Manolis Papadrakakis,et al.  The mosaic of high performance domain Decomposition Methods for Structural Mechanics: Formulation, interrelation and numerical efficiency of primal and dual methods , 2003 .

[13]  R. Ghanem,et al.  Iterative solution of systems of linear equations arising in the context of stochastic finite elements , 2000 .

[14]  Lori Graham-Brady,et al.  Efficient numerical strategies for spectral stochastic finite element models , 2005 .

[15]  P. Frauenfelder,et al.  Finite elements for elliptic problems with stochastic coefficients , 2005 .

[16]  Manolis Papadrakakis,et al.  Improving the computational efficiency in finite element analysis of shells with uncertain properties , 2005 .

[17]  Charbel Farhat,et al.  A FETI‐preconditioned conjugate gradient method for large‐scale stochastic finite element problems , 2009 .

[18]  C. Farhat,et al.  A method to solve spectral stochastic nite element problems for large-scale systems , 2008 .

[19]  Manolis Papadrakakis,et al.  The mosaic of high-performance domain decomposition methods for structural mechanics––Part II: Formulation enhancements, multiple right-hand sides and implicit dynamics , 2004 .

[20]  Mircea Grigoriu,et al.  Evaluation of Karhunen–Loève, Spectral, and Sampling Representations for Stochastic Processes , 2006 .