A new family of penalties for augmented Lagrangian methods

We study a family of penalty functions for augmented Lagrangian methods, and concentrate on a penalty based on the modified logarithmic barrier function. The convex conjugate of this penalty induces a Bregman distance, and the dual iterates associated with the augmented Lagrangian algorithm correspond to the iterates produced by a proximal point algorithm based on this distance. The global convergence of the dual iterates is then proved. Moreover, the level curves of the quadratic approximation of the dual kernels associated with these penalty functions are the Dikin ellipsoids. Copyright © 2008 John Wiley & Sons, Ltd.

[1]  A. I. Perov,et al.  On the convergence of an iterative process , 1977 .

[2]  Y. Censor,et al.  Proximal minimization algorithm withD-functions , 1992 .

[3]  L. Bregman The relaxation method of finding the common point of convex sets and its application to the solution of problems in convex programming , 1967 .

[4]  Roman A. Polyak,et al.  Modified barrier functions (theory and methods) , 1992, Math. Program..

[5]  Nicholas I. M. Gould,et al.  CUTE: constrained and unconstrained testing environment , 1995, TOMS.

[6]  Marc Teboulle,et al.  Nonlinear rescaling and proximal-like methods in convex optimization , 1997, Math. Program..

[7]  Marc Teboulle,et al.  Entropic Proximal Mappings with Applications to Nonlinear Programming , 1992, Math. Oper. Res..

[8]  Michael Zibulevsky,et al.  Penalty/Barrier Multiplier Methods for Convex Programming Problems , 1997, SIAM J. Optim..

[9]  R. Tyrrell Rockafellar,et al.  Augmented Lagrangians and Applications of the Proximal Point Algorithm in Convex Programming , 1976, Math. Oper. Res..

[10]  Marc Teboulle,et al.  Convergence Analysis of a Proximal-Like Minimization Algorithm Using Bregman Functions , 1993, SIAM J. Optim..

[11]  Marc Teboulle,et al.  Entropy-Like Proximal Methods in Convex Programming , 1994, Math. Oper. Res..

[12]  Marc Teboulle,et al.  Convergence Rate Analysis of Nonquadratic Proximal Methods for Convex and Linear Programming , 1995, Math. Oper. Res..

[13]  R. Tyrrell Rockafellar,et al.  A dual approach to solving nonlinear programming problems by unconstrained optimization , 1973, Math. Program..

[14]  J. Moreau Proximité et dualité dans un espace hilbertien , 1965 .

[15]  Jorge J. Moré,et al.  Digital Object Identifier (DOI) 10.1007/s101070100263 , 2001 .

[16]  Paul Tseng,et al.  On the convergence of the exponential multiplier method for convex programming , 1993, Math. Program..

[17]  Jonathan Eckstein,et al.  Nonlinear Proximal Point Algorithms Using Bregman Functions, with Applications to Convex Programming , 1993, Math. Oper. Res..

[18]  Paulo J. S. Silva,et al.  Rescaling and Stepsize Selection in Proximal Methods Using Separable Generalized Distances , 2001, SIAM J. Optim..