Redox-active p-quinone-based Bis(pyrazol-1-yl)methane ligands: synthesis and coordination behaviour.

The synthesis, structural characterisation and coordination behaviour of mono- and ditopic p-hydroquinone-based bis(pyrazol-1-yl)methane ligands is described (i.e., 2-(pz2CH)C6H3(OH)2 (2a), 2-(pz2CH)-6-(tBu)C6H2(OH)2 (2b), 2-(pz2CH)-6-(tBu)C6H2(OSiiPr3)(OH) (2c), 2,5-(pz2CH)2C6H2(OH)2 (4)). Ligands 2a, 2b and 4 can be oxidised to their p-benzoquinone state on a preparative scale (2a ox, 2b ox, 4 ox). An octahedral Ni II complex [trans-Ni(2c)2] and square-planar Pd II complexes [Pd2bCl2] and [Pd2b ox Cl2] have been prepared. In the two Pd II species, the ligands are coordinated only through their pyrazolyl rings. The fact that [Pd2bC12] and [Pd2b oxC12] are isolable compounds proves that redox transitions involving the p-quinone substituent are fully reversible. In [Pd2b oxCl2], the methine proton is highly acidic and can be abstracted with bases as weak as NEt(3). The resulting anion dimerises to give a dinuclear macrocyclic Pd II complex, which has been structurally characterised. The methylated ligand 2-(pz2CMe)C6H3O2 (11 ox) and its Pd II complex [Pd11 oxCl2] are base-stable. A new class of redox-active ligands is now available with the potential for applications both in catalysis and in materials science.

[1]  J. Bats,et al.  Modified 1,4-hydroquinone ligands bridging CuII ions – Building blocks for a new class of quantum magnets , 2008 .

[2]  Yangjie Wu,et al.  DAB-Cy as an inexpensive and effective ligand for palladium-catalyzed homocoupling reaction of aryl halides , 2006 .

[3]  Mark D. Smith,et al.  Silver(I) complexes of fixed, polytopic bis(pyrazolyl)methane ligands: influence of ligand geometry on the formation of discrete metallacycles and coordination polymers. , 2006, Inorganic chemistry.

[4]  J. Bats,et al.  Hydroquinone-bridged dinuclear Cu(II) complexes and single-crystalline Cu(II) coordination polymers. , 2006, Dalton transactions.

[5]  J. Bats,et al.  Redox Behaviour of Pyrazolyl-Substituted 1,4-Dihydroxyarenes: Formation of the Corresponding Semiquinones, Quinhydrones and Quinones , 2006 .

[6]  J. Bats,et al.  Mono-, di-, and oligonuclear complexes of Cu(II) ions and p-hydroquinone ligands: syntheses, electrochemical properties, and magnetic behavior. , 2006, Inorganic chemistry.

[7]  R. Valentí,et al.  Classical and ab initio preparation of reliable structures for polymeric coordination compounds , 2006, cond-mat/0601010.

[8]  J. M. Ugalde,et al.  A joint experimental and theoretical study of cation-pi interactions: multiple-decker sandwich complexes of ferrocene with alkali metal ions (Li+, Na+, K+, Rb+, Cs+). , 2005, Journal of the American Chemical Society.

[9]  M. Wagner,et al.  Synthesis and structural characterization of ferrocene-based bis(pyrazol-1-yl)borate ligands: FcB(Me)pz2K, Fc2Bpz2K, and 1,1′-fc[B(Me)pz2]2K2 (Fc: ferrocenyl, fc: ferrocenylene, pz: pyrazolyl) , 2005 .

[10]  C. Pettinari,et al.  Metal derivatives of poly(pyrazolyl)alkanes II. Bis(pyrazolyl)alkanes and related systems , 2005 .

[11]  D. Reger,et al.  Bitopic Phenylene-Linked Bis(pyrazolyl)methane Ligands: Preparation and Supramolecular Structures of Hetero- and Homobimetallic Complexes Incorporating Organoplatinum(II) and Tricarbonylrhenium(I) Centers , 2005 .

[12]  M. Wagner,et al.  On the way to ferrocene-based multiple-decker sandwich complexes , 2004 .

[13]  Regina H. A. Santos,et al.  Mono- and dinuclear palladium(II) compounds containing nitrogen ligands. Crystal and molecular structure of [Pd(N,C-dmba)(NCO)(2,3-lut)] and [Pd(H2CCOMe)Cl(2,2′-bipy)] , 2004 .

[14]  S. Zherlitsyn,et al.  Acoustic and magnetic anomalies near the saturation field of the S = 1 / 2 antiferromagnetic Heisenberg chain studied on a Cu(II) coordination polymer , 2004 .

[15]  W. Kaim,et al.  Cooperation of metals with electroactive ligands of biochemical relevance: Beyond metalloporphyrins , 2004 .

[16]  H. Mutka,et al.  Bose–Einstein condensation of the triplet states in the magnetic insulator TlCuCl3 , 2003, Nature.

[17]  J. Bats,et al.  One- and three-dimensional infinite arrays of Cu(I) ions exhibited by [Cu(NH3)2]Br and [Cu(NH3)Cl] in the solid state. , 2003, Chemical communications.

[18]  T. M. Rice To Condense or Not to Condense , 2002, Science.

[19]  M. Wagner,et al.  Applications of boron–nitrogen and boron–phosphorus adducts in organometallic chemistry , 2002 .

[20]  Maarten D. K. Boele,et al.  Selective Pd-catalyzed oxidative coupling of anilides with olefins through C-H bond activation at room temperature. , 2002, Journal of the American Chemical Society.

[21]  Michael D. Ward,et al.  Non-innocent behaviour in mononuclear and polynuclear complexes: consequences for redox and electronic spectroscopic properties , 2002 .

[22]  J. Bats,et al.  Electronic communication in oligometallic complexes with ferrocene-based tris(1-pyrazolyl)borate ligands. , 2001, Inorganic chemistry.

[23]  E. Jacobsen,et al.  Highly active oligomeric (salen)co catalysts for asymmetric epoxide ring-opening reactions. , 2001, Journal of the American Chemical Society.

[24]  K. Wieghardt,et al.  Electronic structure of bis(o-iminobenzosemiquinonato)metal complexes (Cu, Ni, Pd). The art of establishing physical oxidation states in transition-metal complexes containing radical ligands. , 2001, Journal of the American Chemical Society.

[25]  D. J. Tempel,et al.  Mechanistic Studies of Pd(II)−α-Diimine-Catalyzed Olefin Polymerizations1 , 2000 .

[26]  D. Swenson,et al.  Neutral and Cationic Palladium(II) Bis(pyrazolyl)methane Complexes , 1999 .

[27]  T. Iwama,et al.  Palladium-Catalyzed (Ullmann-Type) Homocoupling of Aryl Halides: A Convenient and General Synthesis of Symmetrical Biaryls via Inter- and Intramolecular Coupling Reactions , 1999 .

[28]  T. Nikuni,et al.  Bose-Einstein condensation of dilute magnons in TlCuCl3. , 1999, Physical review letters.

[29]  J. Fawcett,et al.  Substitution reactions of trans-[PdXPh(SbPh3)2J (X=Cl or Br) with nitrogen, phosphines and arsenic donor ligands. Crystal structures of trans-[PdClPh(PPh3)2], [PdClPh(bipy)], [PdClPh(dppm)]2, and [PdBrPh(dppm)]2 , 1999 .

[30]  C. Carrano,et al.  Synthesis and Characterization of a Series of Edge-Sharing Octahedral-Tetrahedral-Octahedral Linear Trinuclear Complexes [M(3)(L1O)(4)](2+), Where M = Mn(2+), Co(2+), Ni(2+), Cu(2+), and Zn(2+) and L1OH Is the "Heteroscorpionate" Ligand (2-Hydroxyphenyl)bis(pyrazolyl)methane. , 1998, Inorganic chemistry.

[31]  M. Wagner,et al.  Ferrocene-Based Tris(1-pyrazolyl)borates: A New Approach to Heterooligometallic Complexes and Organometallic Polymers Containing Transition Metal Atoms in the Backbone. , 1997, Inorganic chemistry.

[32]  C. Carrano,et al.  A New Class of Biomimetically Relevant “Scorpionate” Ligands. 2. The (2-Hydroxyphenyl)bis(pyrazolyl)methanes: Structural Characterization of a Series of Mono-, Di-, and Trinuclear Nickel(II) Complexes , 1997 .

[33]  C. Carrano,et al.  A New Class of Biomimetically Relevant “Scorpionate” Ligands. 1. The (2-Hydroxyphenyl)bis(pyrazolyl)methanes: Synthesis and Structural Characterization of Some Cobalt(II) Complexes , 1997 .

[34]  J. Klinman Mechanisms Whereby Mononuclear Copper Proteins Functionalize Organic Substrates. , 1996, Chemical reviews.

[35]  M. Wagner,et al.  Novel Ferrocene‐Based Mono‐ and Bifunctional Tri‐1‐pyrazolylborate Ligands , 1996 .

[36]  Vincenzo Balzani,et al.  Luminescent and Redox-Active Polynuclear Transition Metal Complexes. , 1996, Chemical reviews.

[37]  M. Ward Metal-metal interactions in binuclear complexes exhibiting mixed valency; molecular wires and switches , 1995 .

[38]  J. Klinman,et al.  Model Studies of Topaquinone-Dependent Amine Oxidases. 1. Oxidation of Benzylamine by Topaquinone Analogs , 1995 .

[39]  J. Klinman,et al.  Model Studies of Topaquinone-Dependent Amine Oxidases. 2. Characterization of Reaction Intermediates and Mechanism , 1995 .

[40]  M. Trifuoggi,et al.  Pd(II)-catalyzed alternating copolymerization of carbon monoxide with olefins: comparative results for the olefins ethene and styrene , 1993 .

[41]  W. Maentele,et al.  Electrochemical and infrared-spectroscopic characterization of redox reactions of p-quinones , 1992 .

[42]  A. L. Spek,et al.  PLATON, An Integrated Tool for the Analysis of the Results of a Single Crystal Structure Determination , 1990 .

[43]  H. Grennberg,et al.  Multistep electron transfer in palladium-catalyzed aerobic oxidations via a metal macrocycle-quinone system , 1990 .

[44]  G. Sheldrick Phase annealing in SHELX-90: direct methods for larger structures , 1990 .

[45]  W. Mäntele,et al.  Investigation of models for photosynthetic electron acceptors , 1990 .

[46]  R. Prince,et al.  Electrochemistry of ubiquinones , 1983 .

[47]  A. R. Sanger,et al.  The Mechanism of the Transition Metal-catalyzed Reaction of 1,1′-Carbonyldipyrazoles with Aldehydes and Ketones , 1974 .

[48]  L. Peterson,et al.  The Preparation of 1,1′-Carbonyl- and 1,1′-Sulfinyl-dipyrazoles and their Reactions with Carbonyl Compounds , 1973 .

[49]  L. Peterson Synthesis and Characterization of Dipyrazolylalkanes, and Some of Their Complexes With CoCl2 , 1973 .

[50]  J. Bats,et al.  2,5-Diformylbenzene-1,4-diol: A Versatile Building Block for the Synthesis of Ditopic Redox-Active Schiff Base Ligands , 2007 .

[51]  Thomas Fox,et al.  Spektroskopische Methoden in der organischen Chemie , 2005 .

[52]  K. Shankland,et al.  ONE-DIMENSIONAL SPIN CHAINS FROM CUII IONS AND 2,5-BIS(PYRAZOL-1-YL)-1,4-DIHYDROXYBENZENE , 2002 .

[53]  J. Rawson,et al.  Copper(II) complexes of hydroquinone-containing Schiff bases. Towards a structural model for copper amine oxidases , 2000 .

[54]  E. Díez-Barra,et al.  Syntheses and crystal structures of lithium and niobium complexes containing a new type of monoanionic “scorpionate” ligand† , 1999 .

[55]  M. Wagner,et al.  Sterically demanding ferrocene-based tris(1-pyrazolyl)borate ligands , 1998 .

[56]  R. Blessing,et al.  An empirical correction for absorption anisotropy. , 1995, Acta crystallographica. Section A, Foundations of crystallography.

[57]  J. Klinman,et al.  Quinoenzymes in biology. , 1994, Annual review of biochemistry.