Phase I Distribution-Free Analysis of Multivariate Data

ABSTRACT In this study, a new distribution-free Phase I control chart for retrospectively monitoring multivariate data is developed. The suggested approach, based on the multivariate signed ranks, can be applied to individual or subgrouped data for detection of location shifts with an arbitrary pattern (e.g., isolated, transitory, sustained, progressive, etc.). The procedure is complemented with a LASSO-based post-signal diagnostic method for identification of the shifted variables. A simulation study shows that the method compares favorably with parametric control charts when the process is normally distributed, and largely outperforms other multivariate nonparametric control charts when the process distribution is skewed or heavy-tailed. An R package can be found in the supplementary material.

[1]  Fugee Tsung,et al.  A Variable-Selection-Based Multivariate EWMA Chart for Process Monitoring and Diagnosis , 2012 .

[2]  Serkan Eryilmaz,et al.  Article in Press Computational Statistics and Data Analysis a Phase Ii Nonparametric Control Chart Based on Precedence Statistics with Runs-type Signaling Rules , 2022 .

[3]  Wei Jiang,et al.  A LASSO-Based Diagnostic Framework for Multivariate Statistical Process Control , 2011, Technometrics.

[4]  R. Tibshirani,et al.  Least angle regression , 2004, math/0406456.

[5]  Nedret Billor,et al.  A Distribution-Free Multivariate Phase I Location Control Chart for Subgrouped Data from Elliptical Distributions , 2014, Technometrics.

[6]  Fugee Tsung,et al.  A Multivariate Sign EWMA Control Chart , 2011, Technometrics.

[7]  Gabriela Ciuperca Model selection by LASSO methods in a change-point model , 2011 .

[8]  W. H. Deitenbeck Introduction to statistical process control. , 1995, Healthcare facilities management series.

[9]  Giovanna Capizzi,et al.  Phase I Distribution-Free Analysis of Univariate Data , 2013 .

[10]  Douglas M. Hawkins,et al.  A Control Chart Based on A Nonparametric Multivariate Change-Point Model , 2014 .

[11]  R. Randles,et al.  A practical affine equivariant multivariate median , 2002 .

[12]  Jiahua Chen,et al.  Extended Bayesian information criteria for model selection with large model spaces , 2008 .

[13]  Thomas P. Ryan,et al.  Statistical Methods for Quality Improvement: Ryan/Quality Improvement 3E , 2011 .

[14]  Yiyuan She,et al.  Outlier Detection Using Nonconvex Penalized Regression , 2010, ArXiv.

[15]  S. Holm A Simple Sequentially Rejective Multiple Test Procedure , 1979 .

[16]  Peihua Qiu,et al.  Multivariate Statistical Process Control Using LASSO , 2009 .

[17]  John C. Young,et al.  Multivariate Statistical Process Control , 2013 .

[18]  G. Jogesh Babu,et al.  Multivariate Permutation Tests , 2002, Technometrics.

[19]  Peihua Qiu,et al.  A Rank-Based Multivariate CUSUM Procedure , 2001, Technometrics.

[20]  William H. Woodall,et al.  Controversies and Contradictions in Statistical Process Control , 2000 .

[21]  Victoria S. Jordan,et al.  Distribution-Free Phase I Control Charts for Subgroup Location , 2009 .

[22]  E. S. Page A test for a change in a parameter occurring at an unknown point , 1955 .

[23]  George C. Runger,et al.  Process Partitions from Time-Ordered Clusters , 2009 .

[24]  M. A. Graham,et al.  A Phase I nonparametric Shewhart-type control chart based on the median , 2010 .

[25]  Giovanna Capizzi,et al.  A Least Angle Regression Control Chart for Multidimensional Data , 2011, Technometrics.

[26]  Charles W. Champ,et al.  A Distribution-Free Phase I Control Chart for Subgroup Scale , 2010 .

[27]  Joe H. Sullivan,et al.  Detection of Multiple Change Points from Clustering Individual Observations , 2002 .

[28]  Z. Harchaoui,et al.  Multiple Change-Point Estimation With a Total Variation Penalty , 2010 .

[29]  A. Hadi,et al.  BACON: blocked adaptive computationally efficient outlier nominators , 2000 .

[30]  Philip S. Yu,et al.  Outlier detection for high dimensional data , 2001, SIGMOD '01.

[31]  Giovanna Capizzi,et al.  Recent Advances in Process Monitoring: Nonparametric and Variable-Selection Methods for Phase I and Phase II , 2015 .

[32]  T. Lai,et al.  A STEPWISE REGRESSION METHOD AND CONSISTENT MODEL SELECTION FOR HIGH-DIMENSIONAL SPARSE LINEAR MODELS , 2011 .

[33]  Peihua Qiu,et al.  Distribution-free multivariate process control based on log-linear modeling , 2008 .

[34]  Dongdong Xiang,et al.  A Robust Multivariate EWMA Control Chart for Detecting Sparse Mean Shifts , 2016 .

[35]  William H. Woodall,et al.  Change-point detection of mean vector or covariance matrix shifts using multivariate individual observations , 2000 .

[36]  B. Hamann,et al.  Change Point Detection , 2018 .

[37]  Hannu Oja,et al.  Multivariate Nonparametric Tests , 2004 .

[38]  Marc Hallin,et al.  Optimal rank-based tests for homogeneity of scatter , 2008, 0806.2963.

[39]  Fugee Tsung,et al.  Likelihood Ratio-Based Distribution-Free EWMA Control Charts , 2010 .

[40]  W. Woodall,et al.  Statistical monitoring of heteroscedastic dose-response profiles from high-throughput screening , 2007 .

[41]  Marc Hallin,et al.  Affine-invariant aligned rank tests for the multivariate general linear model with VARMA errors , 2005 .

[42]  Snigdhansu Chatterjee,et al.  Distribution-free cumulative sum control charts using bootstrap-based control limits , 2009, 0906.1421.

[43]  H. Oja Multivariate Nonparametric Methods with R , 2010 .

[44]  Nan Chen,et al.  A Distribution-Free Multivariate Control Chart , 2016, Technometrics.

[45]  Jun Li,et al.  Nonparametric multivariate statistical process control charts: a hypothesis testing-based approach , 2015 .

[46]  Fugee Tsung,et al.  LASSO-based multivariate linear profile monitoring , 2012, Ann. Oper. Res..

[47]  Douglas M. Hawkins,et al.  A Multivariate Change-Point Model for Statistical Process Control , 2006, Technometrics.

[48]  Olivier Capp'e,et al.  Homogeneity and change-point detection tests for multivariate data using rank statistics , 2011, 1107.1971.

[49]  Stefan H. Steiner,et al.  An Overview of Phase I Analysis for Process Improvement and Monitoring , 2014 .

[50]  Jyh-Jen Horng Shiau,et al.  A Distribution‐Free Multivariate Control Chart for Phase I Applications , 2015, Qual. Reliab. Eng. Int..

[51]  Changliang Zou,et al.  Empirical likelihood ratio test for the change-point problem , 2007 .

[52]  Giovanna Capizzi,et al.  Adaptive Generalized Likelihood Ratio Control Charts for Detecting Unknown Patterned Mean Shifts , 2012 .

[53]  L. Huson,et al.  Multivariate Permutation Tests: with Applications in Biostatistics , 2003 .

[54]  A. Erhan Mergen,et al.  IMPROVING THE PERFORMANCE OF THE T2 CONTROL CHART , 1993 .

[55]  D. Hawkins,et al.  A nonparametric multivariate cumulative sum procedure for detecting shifts in all directions , 2003 .

[56]  Sheng-Tsaing Tseng,et al.  Outlier detection in general profiles using penalized regression method , 2014 .

[57]  Peihua Qiu,et al.  On Nonparametric Statistical Process Control of Univariate Processes , 2011, Technometrics.

[58]  Regina Y. Liu Control Charts for Multivariate Processes , 1995 .

[59]  Peihua Qiu,et al.  A Change-Point Approach for Phase-I Analysis in Multivariate Profile Monitoring and Diagnosis , 2016, Technometrics.

[60]  Thomas P. Ryan,et al.  Statistical methods for quality improvement , 1989 .

[61]  Douglas C. Montgomery,et al.  Introduction to Statistical Quality Control , 1986 .

[62]  William H. Woodall,et al.  A Control Chart for Preliminary Analysis of Individual Observations , 1996 .

[63]  H. Zou The Adaptive Lasso and Its Oracle Properties , 2006 .

[64]  Zachary G. Stoumbos,et al.  Robustness to Non-Normality of the Multivariate EWMA Control Chart , 2002 .

[65]  Marc Hallin,et al.  Multivariate Signed-Rank Tests in Vector Autoregressive Order Identification , 2004 .

[66]  Changliang Zou,et al.  Nonparametric maximum likelihood approach to multiple change-point problems , 2014, 1405.7173.

[67]  Hansheng Wang Forward Regression for Ultra-High Dimensional Variable Screening , 2009 .

[68]  M. A. Graham,et al.  Phase I Statistical Process Control Charts: An Overview and Some Results , 2008 .

[69]  Song-xi Chen,et al.  A two-sample test for high-dimensional data with applications to gene-set testing , 2010, 1002.4547.

[70]  H. Oja Multivariate Nonparametric Methods with R: An approach based on spatial signs and ranks , 2010 .

[71]  R. Tibshirani,et al.  Regression shrinkage and selection via the lasso: a retrospective , 2011 .

[72]  Long Feng,et al.  Multivariate-Sign-Based High-Dimensional Tests for the Two-Sample Location Problem , 2016 .

[73]  Giovanna Capizzi,et al.  Comparison of Phase II Control Charts Based on Variable Selection Methods , 2015 .

[74]  D. Paindaveine,et al.  Optimal tests for multivariate location based on interdirections and pseudo-Mahalanobis ranks , 2002 .

[75]  R. Tibshirani Regression Shrinkage and Selection via the Lasso , 1996 .