Introduction to the transverse spatial correlations in spontaneous parametric down-conversion through the biphoton birth zone

As a tutorial to the spatial aspects of Spontaneous Parametric Downconversion (SPDC), we present a detailed first-principles derivation of the transverse correlation width of photon pairs in degenerate collinear SPDC. This width defines the size of a biphoton birth zone, the region where the signal and idler photons are likely to be found when conditioning on the position of the destroyed pump photon. Along the way, we discuss the quantum-optical calculation of the amplitude for the SPDC process, as well as its simplified form for nearly collinear degenerate phase matching. Following this, we show how this biphoton amplitude can be approximated with a Double-Gaussian wavefunction, and give a brief discussion of the measurement statistics (and subsequent convenience) of such Double-Gaussian wavefunctions. Next, we use this approximation to get a simplified estimation of the transverse correlation width, and compare it to more accurate calculations as well as experimental results. We then conclude with a discussion of the concept of a biphoton birth zone, using it to develop intuition for the tradeoff between the first-order spatial coherence and bipohoton correlations in SPDC.

[1]  W. P. Bowen,et al.  Colloquium: The Einstein-Podolsky-Rosen paradox: From concepts to applications , 2008, 0806.0270.

[2]  Andreas Christ,et al.  Probing multimode squeezing with correlation functions , 2010, 1012.0262.

[3]  Photon number statistics of multimode parametric down-conversion. , 2008, Physical review letters.

[4]  Julia M. Mikhailova,et al.  Biphoton wave packets in parametric down-conversion: Spectral and temporal structure and degree of entanglement , 2008 .

[5]  C. Monken,et al.  Direct measurement of transverse-mode entanglement in two-photon states , 2009 .

[6]  Daniel Ljunggren,et al.  Optimal focusing for maximal collection of entangled narrow-band photon pairs into single-mode fibers , 2005 .

[7]  J. Goodman Introduction to Fourier optics , 1969 .

[8]  So-Young Baek,et al.  Spectral properties of entangled photon pairs generated via frequency-degenerate type-I spontaneous parametric down-conversion , 2008 .

[9]  J H Eberly,et al.  Analysis and interpretation of high transverse entanglement in optical parametric down conversion. , 2004, Physical review letters.

[10]  Irfan Khan,et al.  Experimental demonstration of high two-photon time-energy entanglement , 2006 .

[11]  Shih,et al.  Two-photon geometric optics. , 1996, Physical review. A, Atomic, molecular, and optical physics.

[12]  Packet narrowing and quantum entanglement in photoionization and photodissociation , 2003, quant-ph/0312119.

[13]  S. Walborn,et al.  Spatial correlations in parametric down-conversion , 2010, 1010.1236.

[14]  R. Sillitto The Quantum Theory of Light , 1974 .

[15]  K. Mølmer,et al.  Induced coherence with and without induced emission , 2000, quant-ph/0001118.

[16]  Paolo Villoresi,et al.  Asymmetric architecture for heralded single-photon sources , 2012, 1210.6878.

[17]  P. Corkum,et al.  Journal of Physics B: atomic, molecular and optical physics , 2015 .

[18]  L. Mandel,et al.  Optical Coherence and Quantum Optics , 1995 .

[19]  Robert W. Boyd,et al.  Secure information capacity of photons entangled in many dimensions , 2012 .

[20]  Stephen M. Barnett,et al.  Information communicated by entangled photon pairs , 2012, 1203.1537.

[21]  M. Teich,et al.  Duality between partial coherence and partial entanglement , 2000 .

[22]  James Schneeloch,et al.  Violation of continuous variable EPR steering with discrete measurements , 2012, CLEO: 2013.

[23]  Hong,et al.  Theory of parametric frequency down conversion of light. , 1985, Physical review. A, General physics.

[24]  John C. Howell,et al.  Efficient high-dimensional entanglement imaging with a compressive sensing, double-pixel camera , 2012, 1212.5530.

[25]  D. A. Kleinman,et al.  Theory of Optical Parametric Noise , 1968 .

[26]  G. Buller,et al.  Imaging high-dimensional spatial entanglement with a camera , 2012, Nature Communications.

[27]  C. C. Wang,et al.  Nonlinear optics. , 1966, Applied optics.

[28]  John C Howell,et al.  Realization of the Einstein-Podolsky-Rosen paradox using momentum- and position-entangled photons from spontaneous parametric down conversion. , 2004, Physical review letters.

[29]  Shih,et al.  Can Two-Photon Interference be Considered the Interference of Two Photons? , 1996, Physical review letters.

[30]  Robert W Boyd,et al.  Quantum and classical coincidence imaging. , 2004, Physical review letters.

[31]  M. Rubin,et al.  THEORY OF TWO-PHOTON ENTANGLEMENT FOR SPONTANEOUS PARAMETRIC DOWN-CONVERSION DRIVEN BY A NARROW PUMP PULSE , 1997 .

[32]  F. Devaux,et al.  Realization of the purely spatial Einstein-Podolsky-Rosen paradox in full-field images of spontaneous parametric down conversion , 2012, 1204.0990.

[33]  Carlos H. Monken,et al.  Transfer of angular spectrum and image formation in spontaneous parametric down-conversion , 1998 .

[34]  John E. Sipe,et al.  How does it scale? Comparing quantum and classical nonlinear optical processes in integrated devices , 2012 .

[35]  C. Monken,et al.  Energy and momentum entanglement in parametric downconversion , 2011, 1110.2231.

[36]  C. Kurtsiefer,et al.  Absolute rates of Spontaneous Parametric Down Conversion into a single transverse Gaussian mode , 2008, 2008 Conference on Lasers and Electro-Optics and 2008 Conference on Quantum Electronics and Laser Science.

[37]  S. Walborn,et al.  Revealing hidden Einstein-Podolsky-Rosen nonlocality. , 2011, Physical review letters.

[38]  P. H. Souto Ribeiro,et al.  Continuous-variable quantum computation with spatial degrees of freedom of photons , 2011, 1106.3049.

[39]  J. P. Torres,et al.  Transverse entanglement migration in Hilbert space , 2007 .

[40]  C. Barus AN AMERICAN JOURNAL OF PHYSICS. , 1902, Science.