Osteological Correlates for Quadrupedality in Ornithischian Dinosaurs

The evolution of quadrupedality from bipedal ancestors is an exceptionally rare transition in tetrapod evolution, but it has occurred several times within the herbivorous dinosaur clade Ornithischia. Stegosauria, Ankylosauria, and Ceratopsidae are all uncontroversially quadrupedal, while basal ornithischians and basal ornithopods are uncontroversially bipedal. However, stance in iguanodontian ornithopods, including the hadrosaurs, and in non-ceratopsid ceratopsians is debated because robust osteological correlates of quadrupedality have not been identified. We examine a suite of characteristics that have been previously proposed as osteological correlates for bipedality or quadrupedality in dinosaurs. These include both discrete anatomical features, which we assess as correlates for quadrupedality using character optimization onto a composite cladogram, and proportional ratios, which we assess as correlates by reconstructing nodal ancestral states using squared-change parsimony, followed by optimization. We also examine the correlation of these features with body size. An anterolateral process on the proximal ulna, hoof-shaped manual unguals, a transversely broadened ilium, a reduced fourth trochanter and a femur longer than the tibia are found to be robust correlates of quadrupedality in ornithischian dinosaurs. Along the ceratopsid “stem” lineage, quadrupedal characters were acquired in a stepwise fashion, with forelimb characters developing prior to changes in the hind limb. In contrast, iguanodontid ornithopods display a mosaic of character states, indicating varying degrees of facultative quadrupedality that probably arose for a variety of different reasons. Hadrosaurs are found to possess all character states associated with quadrupedality and were probably predominantly quadrupedal. In general, quadrupedal ornithischians do not appear to have been constrained by their bipedal ancestry to a particular order of character acquisition.

[1]  S. Maidment Stegosauria: a historical review of the body fossil record and phylogenetic relationships , 2010 .

[2]  A. Farke,et al.  New Horned Dinosaurs from Utah Provide Evidence for Intracontinental Dinosaur Endemism , 2010, PloS one.

[3]  M. Lockley,et al.  Ceratopsid tracks and associated ichnofauna from the Laramie Formation (Upper Cretaceous: Maastrichtian) of Colorado , 1995 .

[4]  P. Barrett,et al.  Phylogeny of the ankylosaurian dinosaurs (Ornithischia: Thyreophora) , 2012 .

[5]  A. Romer THE PELVIC MUSCULATURE OF ORNITHISCHIAN DINOSAURS , 1927 .

[6]  Clint A. Boyd,et al.  A new basal ornithopod dinosaur (Frenchman Formation, Saskatchewan, Canada), and implications for late Maastrichtian ornithischian diversity in North America , 2011 .

[7]  E. H. Colbert Relationships of the saurischian dinosaurs. American Museum novitates ; no. 2181 , 1964 .

[8]  Laura B. Porro,et al.  Lower limits of ornithischian dinosaur body size inferred from a new Upper Jurassic heterodontosaurid from North America , 2010, Proceedings of the Royal Society B: Biological Sciences.

[9]  R. M. Alexander,et al.  Mechanics of posture and gait of some large dinosaurs , 1985 .

[10]  James M. Clark,et al.  A basal ceratopsian with transitional features from the Late Jurassic of northwestern China , 2006, Proceedings of the Royal Society B: Biological Sciences.

[11]  T. Huxley Further Evidence of the Affinity between the Dinosaurian Reptiles and Birds , 1870, Quarterly Journal of the Geological Society of London.

[12]  L. Lanyon,et al.  Chapter 1. Functional Adaptation in Skeletal Structures , 1985 .

[13]  W. I. Sellers,et al.  Minimum convex hull mass estimations of complete mounted skeletons , 2012, Biology Letters.

[14]  Louis Dollo Troisième note sur les dinosauriens de Bernissart , 1883 .

[15]  A. Romer Crocodilian pelvic muscles and their avian and reptilian homologues. Bulletin of the AMNH ; v. 48, article 15. , 1923 .

[16]  P. Barrett,et al.  Does morphological convergence imply functional similarity? A test using the evolution of quadrupedalism in ornithischian dinosaurs , 2012, Proceedings of the Royal Society B: Biological Sciences.

[17]  P. Senter Analysis of forelimb function in basal ceratopsians , 2007 .

[18]  C. Sternberg Complete skeleton of Leptocertatops gracilis Brown from the Upper Edmonton Member on Red Deer River, Alberta , 1951 .

[19]  W. Coombs The families of the ornithischian dinosaur order ankylosauria , 1978 .

[20]  D. Norman On the anatomy of Iguanodon atherfieldensis (Ornithischia: Ornithopoda) , 1986 .

[21]  D. Henderson,et al.  Estimating the masses and centers of mass of extinct animals by 3-D mathematical slicing , 1999, Paleobiology.

[22]  P. Barrett,et al.  The Locomotor Musculature of Basal Ornithischian Dinosaurs , 2011 .

[23]  D. Weishampel,et al.  Osteology and phylogeny of Zalmoxes (n. g.), an unusual Euornithopod dinosaur from the latest Cretaceous of Romania , 2003 .

[24]  A. Yates,et al.  The earliest known sauropod dinosaur and the first steps towards sauropod locomotion , 2003, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[25]  P. Upchurch,et al.  The phylogeny of the ornithischian dinosaurs , 2008 .

[26]  P. Upchurch,et al.  Systematics and phylogeny of Stegosauria (Dinosauria: Ornithischia) , 2008 .

[27]  William I. Sellers,et al.  HOW BIG WAS 'BIG AL'? QUANTIFYING THE EFFECT OF SOFT TISSUE AND OSTEOLOGICAL UNKNOWNS ON MASS PREDICTIONS FOR ALLOSAURUS (DINOSAURIA:THEROPODA) , 2009 .

[28]  N. Campione,et al.  A universal scaling relationship between body mass and proximal limb bone dimensions in quadrupedal terrestrial tetrapods , 2012, BMC Biology.

[29]  Stephen M. Gatesy,et al.  Caudofemoral musculature and the evolution of theropod locomotion , 1990, Paleobiology.

[30]  M. Avanzini,et al.  A review of vertebrate track assemblages from the Late Jurassic of Asturias, Spain with comparative notes on coeval ichnofaunas from the western USA: implications for faunal diversity in siliciclastic facies assemblages. , 2008 .

[31]  G. Paul DINOSAUR MODELS : THE GOOD , THE BAD , AND USING THEM TO ESTIMATE THE MASS OF DINOSAURS , 2022 .

[32]  Kenneth Carpenter,et al.  A New Species of Camptosaurus (Ornithopoda: Dinosauria) from the Morrison Formation (Upper Jurassic) of Dinosaur National Monument, Utah, and a Biomechanical Analysis of Its Forelimb , 2008 .

[33]  John R. Hutchinson,et al.  The evolution of femoral osteology and soft tissues on the line to extant birds (Neornithes) , 2001 .

[34]  W. Coombs,et al.  Theoretical Aspects of Cursorial Adaptations in Dinosaurs , 1978, The Quarterly Review of Biology.

[35]  Theodore Garland,et al.  Does metatarsal/femur ratio predict maximal running speed in cursorial mammals? , 1993 .

[36]  P. Sereno Dinosaur Systematics: New data on parrot-beaked dinosaurs ( Psittacosaurus ) , 1990 .

[37]  Ornithischian Dinosaur,et al.  ON THE ORNITHISCHIAN DINOSAUR IGUANODON BERNISSARTENSIS FROM THE LOWER CRETACEOUS OF BERNISSART ( BELGIUM ) , 2013 .

[38]  A. Prieto-mÁrquez,et al.  Global phylogeny of Hadrosauridae (Dinosauria: Ornithopoda) using parsimony and Bayesian methods , 2010 .

[39]  D. Maddison,et al.  MacClade 4: analysis of phy-logeny and character evolution , 2003 .

[40]  M. Carrano,et al.  Titanosaurs and the origin of “wide-gauge” trackways: a biomechanical and systematic perspective on sauropod locomotion , 1999, Paleobiology.

[41]  C. W. Gilmore Osteology of the Jurassic reptile Camptosaurus, with a revision of the species of the genus, and descriptions of two new species , 1909 .

[42]  D. Dilkes,et al.  An ontogenetic perspective on locomotion in the Late Cretaceous dinosaur Maiasaura peeblesorum (Ornithischia: Hadrosauridae) , 2001 .

[43]  A. Yates,et al.  A new transitional sauropodomorph dinosaur from the Early Jurassic of South Africa and the evolution of sauropod feeding and quadrupedalism , 2010, Proceedings of the Royal Society B: Biological Sciences.

[44]  P. Galton Hypsilophodon, the Cursorial Non-arboreal Dinosaur , 1971, Nature.

[45]  R. M. Alexander,et al.  Walking and running , 1984, The Mathematical Gazette.

[46]  Xing(徐星) Xu,et al.  A New Leptoceratopsid (Ornithischia: Ceratopsia) from the Upper Cretaceous of Shandong, China and Its Implications for Neoceratopsian Evolution , 2010, PloS one.

[47]  M. Carrano,et al.  Implications of limb bone scaling, curvature and eccentricity in mammals and non‐avian dinosaurs , 2001 .

[48]  B. Chinnery MORPHOMETRIC ANALYSIS OF EVOLUTIONARY TRENDS IN THE CERATOPSIAN POSTCRANIAL SKELETON , 2004 .

[49]  R. A. Thulborn Origins and Evolution of Ornithischian Dinosaurs , 1971, Nature.

[50]  P. Sereno Taxonomy, Cranial Morphology, and Relationships of Parrot-Beaked Dinosaurs (Ceratopsia: Psittacosaurus) , 2010 .

[51]  M. Carrano What, if anything, is a cursor? Categories versus continua for determining locomotor habit in mammals and dinosaurs , 1999 .

[52]  Paul M. Barrett,et al.  Limb-Bone Scaling Indicates Diverse Stance and Gait in Quadrupedal Ornithischian Dinosaurs , 2012, PloS one.

[53]  P. Sereno Lesothosaurus, “Fabrosaurids,” and the early evolution of Ornithischia , 1991 .

[54]  Matthew F. Bonnan THE EVOLUTION OF MANUS SHAPE IN SAUROPOD DINOSAURS: IMPLICATIONS FOR FUNCTIONAL MORPHOLOGY, FORELIMB ORIENTATION, AND PHYLOGENY , 2003 .

[55]  Time-Life Books,et al.  WALKING AND RUNNING. , 1885, Science.

[56]  M. Ryan,et al.  A New Centrosaurine from the Late Cretaceous of Alberta, Canada, and the Evolution of Parietal Ornamentation in Horned Dinosaurs , 2011 .

[57]  A. Biewener Scaling body support in mammals: limb posture and muscle mechanics. , 1989, Science.

[58]  W. Maddison Squared-Change Parsimony Reconstructions of Ancestral States for Continuous-Valued Characters on a Phylogenetic Tree , 1991 .

[59]  P. Galton,et al.  THE POSTURE OF HADROSAURIAN DINOSAURS , 1970 .

[60]  D. Russell A skeletal reconstruction of Leptoceratops gracilis from the upper Edmonton Formation (Cretaceous) of Alberta , 1970 .

[61]  P. Barrett,et al.  A new basal iguanodont (Dinosauria: Ornithischia) from the Wealden (Lower Cretaceous) of England , 2010 .

[62]  W. Sellers,et al.  How big was ‘Big Al’. , 2010 .

[63]  William I. Sellers,et al.  Estimating Mass Properties of Dinosaurs Using Laser Imaging and 3D Computer Modelling , 2009, PloS one.

[64]  D. Henderson BURLY GAITS: CENTERS OF MASS, STABILITY, AND THE TRACKWAYS OF SAUROPOD DINOSAURS , 2006 .

[65]  Ø. Hammer,et al.  PAST: PALEONTOLOGICAL STATISTICAL SOFTWARE PACKAGE FOR EDUCATION AND DATA ANALYSIS , 2001 .

[66]  John R Hutchinson,et al.  Pelvic and hindlimb musculature of Tyrannosaurus rex (Dinosauria: Theropoda) , 2002, Journal of morphology.

[67]  K. Bates,et al.  Three-dimensional computational modeling of pelvic locomotor muscle moment arms in Edmontosaurus (Dinosauria, Hadrosauridae) and comparisons with other archosaurs , 2014 .

[68]  P. Sereno,et al.  The evolution of dinosaurs. , 1999, Science.