A comparison of algorithms for long-range interactions

[1]  E. Hobson The Theory of Spherical and Ellipsoidal Harmonics , 1955 .

[2]  A. Buckingham Molecular quadrupole moments , 1959 .

[3]  W. Davidon,et al.  Mathematical Methods of Physics , 1965 .

[4]  Irene A. Stegun,et al.  Handbook of Mathematical Functions. , 1966 .

[5]  John M. Dawson,et al.  The dipole expansion method for plasma simulation , 1973 .

[6]  R. Hockney,et al.  Shaping the force law in two-dimensional particle-mesh models , 1974 .

[7]  Anthony J. C. Ladd,et al.  Monte-Carlo simulation of water , 1977 .

[8]  R. Righini,et al.  Lattice dynamics of molecular crystals using atom—atom and multipole—multipole potentials , 1978 .

[9]  A. Ladd Long-range dipolar interactions in computer simulations of polar liquids , 1978 .

[10]  B. Silvi,et al.  Cartesian expressions for electric multipole moment operators , 1982 .

[11]  William C. Swope,et al.  The role of long ranged forces in determining the structure and properties of liquid water , 1983 .

[12]  Andrew W. Appel,et al.  An Efficient Program for Many-Body Simulation , 1983 .

[13]  B. Montgomery Pettitt,et al.  Structural and energetic effects of truncating long ranged interactions in ionic and polar fluids , 1985 .

[14]  Piet Hut,et al.  A hierarchical O(N log N) force-calculation algorithm , 1986, Nature.

[15]  Leslie Greengard,et al.  A fast algorithm for particle simulations , 1987 .

[16]  L. Hernquist,et al.  Performance characteristics of tree codes , 1987 .

[17]  Charles L. Brooks,et al.  The influence of long-range force truncation on the thermodynamics of aqueous ionic solutions , 1987 .

[18]  Arieh Warshel,et al.  The extended Ewald method: A general treatment of long‐range electrostatic interactions in microscopic simulations , 1988 .

[19]  L. Greengard,et al.  A Fast Adaptive Multipole Algorithm for Particle Simulations , 1988 .

[20]  J. Banavar,et al.  Computer Simulation of Liquids , 1988 .

[21]  H. G. Petersen,et al.  An algorithm for the simulation of condensed matter which grows as the 3/2 power of the number of particles , 1988 .

[22]  J. Villumsen A new hierarchical particle-mesh code for very large scale cosmological N-body simulations , 1989 .

[23]  A. Avoird,et al.  Analytical two- and three-dimensional lattice sums for general multipole interactions , 1989 .

[24]  B. U. Felderhof,et al.  Electrostatic interactions in periodic Coulomb and dipolar systems. , 1989, Physical review. A, General physics.

[25]  David H. Porter,et al.  A tree code with logarithmic reduction of force terms, hierarchical regularization of all variables, and explicit accuracy controls , 1989 .

[26]  Jacob Katzenelson Computational structure of the N-body problem , 1989 .

[27]  William H. Press,et al.  Numerical recipes , 1990 .

[28]  K. Schmidt,et al.  Implementing the fast multipole method in three dimensions , 1991 .

[29]  Feng Zhao,et al.  The Parallel Multipole Method on the Connection Machine , 1991, SIAM J. Sci. Comput..

[30]  Christopher R. Anderson,et al.  An Implementation of the Fast Multipole Method without Multipoles , 1992, SIAM J. Sci. Comput..

[31]  W. Goddard,et al.  The reduced cell multipole method for Coulomb interactions in periodic systems with million-atom unit cells , 1992 .

[32]  Arieh Warshel,et al.  A local reaction field method for fast evaluation of long‐range electrostatic interactions in molecular simulations , 1992 .

[33]  B. U. Felderhof,et al.  Reduced description of electric multipole potential in Cartesian coordinates , 1992 .

[34]  Minoru Saito,et al.  Molecular dynamics simulations of proteins in water without the truncation of long-range Coulomb interactions , 1992 .

[35]  W. Goddard,et al.  Atomic level simulations on a million particles: The cell multipole method for Coulomb and London nonbond interactions , 1992 .

[36]  Henrik Gordon Petersen,et al.  On the fast multipole method for computing the energy of periodic assemblies of charged and dipolar particles , 1993 .

[37]  K. Esselink,et al.  Efficient Parallel Implementation of Molecular Dynamics on a Toroidal Network. Part II. Multi-particle Potentials , 1993 .

[38]  Jiro Shimada,et al.  Efficient calculations of coulombic interactions in biomolecular simulations with periodic boundary conditions , 1993, J. Comput. Chem..

[39]  David Fincham,et al.  Optimisation of the Ewald Sum for Large Systems , 1994 .

[40]  Jiro Shimada,et al.  Performance of fast multipole methods for calculating electrostatic interactions in biomacromolecular simulations , 1994, J. Comput. Chem..