Embeddings of graphs of fixed treewidth and bounded degree

Let  F  be any family of graphs of fixed treewidth and bounded degree. We construct a quadratic-time algorithm for calculating the genus distribution of the graphs in F . Within a post-order traversal of the decomposition tree, the algorithm involves a full-powered upgrading of production rules and root-popping . This algorithm for calculating genus distributions in quadratic time complements an algorithm of Kawarabayashi, Mohar, and Reed for calculating the minimum genus of a graph of bounded treewidth in linear time.

[1]  Jonathan L. Gross,et al.  Genus distributions of graphs under self-edge-amalgamations , 2012, Ars Math. Contemp..

[2]  Jonathan L. Gross,et al.  Genus Distribution of Graph Amalgamations: Pasting at Root-Vertices , 2010, Ars Comb..

[3]  Bruce A. Reed,et al.  A Simpler Linear Time Algorithm for Embedding Graphs into an Arbitrary Surface and the Genus of Graphs of Bounded Tree-Width , 2008, 2008 49th Annual IEEE Symposium on Foundations of Computer Science.

[4]  Hans L. Bodlaender,et al.  A Partial k-Arboretum of Graphs with Bounded Treewidth , 1998, Theor. Comput. Sci..

[5]  Carsten Thomassen,et al.  The Genus Problem for Cubic Graphs , 1997, J. Comb. Theory, Ser. B.

[6]  Jonathan L. Gross,et al.  Genus distribution of graph amalgamations: self-pasting at root-vertices , 2011, Australas. J Comb..

[7]  Jonathan L. Gross,et al.  Genus distribution of P3□Pn , 2012, Discret. Math..

[8]  B. Mohar,et al.  Graph Minors , 2009 .

[9]  Saul Stahl ON THE ZEROS OF SOME GENUS POLYNOMIALS , 1997 .

[10]  Jonathan L. Gross,et al.  Genus distribution of graphs under surgery: adding edges and splitting vertices , 2010 .

[11]  Jonathan L. Gross,et al.  Journal of Graph Algorithms and Applications Genus Distributions of Cubic Outerplanar Graphs , 2022 .

[12]  Carsten Thomassen,et al.  The Graph Genus Problem is NP-Complete , 1989, J. Algorithms.

[13]  Jonathan L. Gross,et al.  Genus distributions of graphs under edge-amalgamations , 2010, Ars Math. Contemp..

[14]  Weili Wu,et al.  Steiner Trees , 2016, Encyclopedia of Algorithms.

[15]  Jonathan L. Gross,et al.  Handbook of Graph Theory, Second Edition , 2013 .

[16]  Saul Stahl,et al.  Permutation-partition pairs. III. Embedding distributions of linear families of graphs , 1991, J. Comb. Theory, Ser. B.

[17]  Carsten Thomassen,et al.  Graphs on Surfaces , 2001, Johns Hopkins series in the mathematical sciences.

[18]  Jozef Širáň,et al.  Relative Embeddings of Graphs on Closed Surfaces , 1988 .

[19]  Hans L. Bodlaender,et al.  A linear time algorithm for finding tree-decompositions of small treewidth , 1993, STOC.

[20]  Craig A. Tovey,et al.  Recursively Constructed Graphs , 2013 .

[21]  Liu Yan-pei,et al.  Genus Distribution for Two Classes of Graphs , 2006 .

[22]  Paul D. Seymour,et al.  Graph Minors. II. Algorithmic Aspects of Tree-Width , 1986, J. Algorithms.

[23]  L. Beineke,et al.  Topics in Topological Graph Theory , 2009 .

[24]  Richard Statman,et al.  Genus distributions for two classes of graphs , 1989, J. Comb. Theory, Ser. B.

[25]  Jonathan L. Gross,et al.  Topological Graph Theory , 1987, Handbook of Graph Theory.

[26]  Jonathan L. Gross,et al.  Genus Distributions of 4-Regular Outerplanar Graphs , 2011, Electron. J. Comb..

[27]  Jonathan L. Gross,et al.  Log-Concavity of Combinations of Sequences and Applications to Genus Distributions , 2014, SIAM J. Discret. Math..

[28]  Charles J. Colbourn,et al.  Steiner trees, partial 2-trees, and minimum IFI networks , 1983, Networks.