Privacy-Preserving Outsourced Calculation Toolkit in the Cloud

In this paper, we propose a privacy-preserving outsourced calculation toolkit, Pockit, designed to allow data owners to securely outsource their data to the cloud for storage. The outsourced encrypted data can be processed by the cloud server to achieve commonly-used plaintext arithmetic operations without involving additional servers. Specifically, we design both signed and unsigned integer circuits using a fully homomorphic encryption (FHE) scheme, construct a new packing technique (hereafter referred to as integer packing), and extend the secure circuits to its packed version. This achieves significant improvements in performance compared with the original secure signed/unsigned integer circuit. The secure integer circuits can be used to construct a new data mining application, which we refer to as secure <inline-formula><tex-math notation="LaTeX">$k$</tex-math><alternatives><mml:math><mml:mi>k</mml:mi></mml:math><inline-graphic xlink:href="liu-ieq1-2816656.gif"/></alternatives></inline-formula>-nearest neighbours classifier, without compromising the privacy of original data. Finally, we prove that the proposed Pockit achieves the goal of secure computation without privacy leakage to unauthorized parties, and demonstrate the utility and efficiency of Pockit.

[1]  George Kollios,et al.  k-nearest neighbors in uncertain graphs , 2010, Proc. VLDB Endow..

[2]  Jianfeng Ma,et al.  Privacy-Preserving Patient-Centric Clinical Decision Support System on Naïve Bayesian Classification , 2016, IEEE Journal of Biomedical and Health Informatics.

[3]  Pascal Paillier,et al.  Public-Key Cryptosystems Based on Composite Degree Residuosity Classes , 1999, EUROCRYPT.

[4]  Ximeng Liu,et al.  An Efficient Privacy-Preserving Outsourced Calculation Toolkit With Multiple Keys , 2016, IEEE Transactions on Information Forensics and Security.

[5]  Benny Pinkas,et al.  Oblivious RAM Revisited , 2010, CRYPTO.

[6]  Thierry Denoeux,et al.  A k-nearest neighbor classification rule based on Dempster-Shafer theory , 1995, IEEE Trans. Syst. Man Cybern..

[7]  Greg Linden,et al.  Amazon . com Recommendations Item-to-Item Collaborative Filtering , 2001 .

[8]  Craig Gentry,et al.  Fully Homomorphic Encryption with Polylog Overhead , 2012, EUROCRYPT.

[9]  M. Mohandes,et al.  Image-Based and Sensor-Based Approaches to Arabic Sign Language Recognition , 2014, IEEE Transactions on Human-Machine Systems.

[10]  Craig Gentry,et al.  Better Bootstrapping in Fully Homomorphic Encryption , 2012, Public Key Cryptography.

[11]  Vivek Kundra,et al.  Federal Cloud Computing Strategy , 2011 .

[12]  Michael T. Goodrich,et al.  Privacy-Preserving Access of Outsourced Data via Oblivious RAM Simulation , 2010, ICALP.

[13]  Deborah Estrin,et al.  An evaluation of multi-resolution storage for sensor networks , 2003, SenSys '03.

[14]  Craig Gentry,et al.  Homomorphic Evaluation of the AES Circuit , 2012, IACR Cryptol. ePrint Arch..

[15]  Joseph A. Gallian,et al.  Contemporary Abstract Algebra , 2021 .

[16]  Jürgen Schmidhuber,et al.  Deep learning in neural networks: An overview , 2014, Neural Networks.

[17]  Jung Hee Cheon,et al.  Optimized Search-and-Compute Circuits and Their Application to Query Evaluation on Encrypted Data , 2016, IEEE Transactions on Information Forensics and Security.

[18]  Taher El Gamal A public key cryptosystem and a signature scheme based on discrete logarithms , 1984, IEEE Trans. Inf. Theory.

[19]  Guigang Zhang,et al.  Deep Learning , 2016, Int. J. Semantic Comput..

[20]  Craig Gentry,et al.  (Leveled) fully homomorphic encryption without bootstrapping , 2012, ITCS '12.

[21]  S. Rao Kosaraju,et al.  A decomposition of multidimensional point sets with applications to k-nearest-neighbors and n-body potential fields , 1995, JACM.

[22]  Ivan Damgård,et al.  Multiparty Computation from Somewhat Homomorphic Encryption , 2012, IACR Cryptol. ePrint Arch..

[23]  Brent Waters,et al.  Homomorphic Encryption from Learning with Errors: Conceptually-Simpler, Asymptotically-Faster, Attribute-Based , 2013, CRYPTO.

[24]  Vinod Vaikuntanathan,et al.  Efficient Fully Homomorphic Encryption from (Standard) LWE , 2011, 2011 IEEE 52nd Annual Symposium on Foundations of Computer Science.

[25]  Michael Clear,et al.  Multi-identity and Multi-key Leveled FHE from Learning with Errors , 2015, CRYPTO.

[26]  Ron Steinfeld,et al.  Faster Fully Homomorphic Encryption , 2010, ASIACRYPT.

[27]  Kim-Kwang Raymond Choo,et al.  A Cross Tenant Access Control (CTAC) Model for Cloud Computing: Formal Specification and Verification , 2017, IEEE Transactions on Information Forensics and Security.

[28]  Yehuda Lindell,et al.  Privacy Preserving Data Mining , 2002, Journal of Cryptology.

[29]  Fabio A. González,et al.  A Deep Learning Architecture for Image Representation, Visual Interpretability and Automated Basal-Cell Carcinoma Cancer Detection , 2013, MICCAI.

[30]  Craig Gentry,et al.  A fully homomorphic encryption scheme , 2009 .

[31]  Kim-Kwang Raymond Choo,et al.  A Provably-Secure Cross-Domain Handshake Scheme with Symptoms-Matching for Mobile Healthcare Social Network , 2018, IEEE Transactions on Dependable and Secure Computing.

[32]  Muttukrishnan Rajarajan,et al.  Privacy-Preserving Clinical Decision Support System Using Gaussian Kernel-Based Classification , 2014, IEEE Journal of Biomedical and Health Informatics.

[33]  Shai Halevi,et al.  Bootstrapping for HElib , 2015, EUROCRYPT.

[34]  Frederik Vercauteren,et al.  On CCA-Secure Somewhat Homomorphic Encryption , 2011, Selected Areas in Cryptography.

[35]  Frederik Vercauteren,et al.  Fully homomorphic SIMD operations , 2012, Designs, Codes and Cryptography.

[36]  Vinod Vaikuntanathan,et al.  Can homomorphic encryption be practical? , 2011, CCSW '11.

[37]  Stefan Katzenbeisser,et al.  Efficiently Outsourcing Multiparty Computation Under Multiple Keys , 2013, IEEE Transactions on Information Forensics and Security.

[38]  Kristin E. Lauter,et al.  Cryptographic Cloud Storage , 2010, Financial Cryptography Workshops.

[39]  Frederik Vercauteren,et al.  Fully Homomorphic Encryption with Relatively Small Key and Ciphertext Sizes , 2010, Public Key Cryptography.

[40]  Robert H. Deng,et al.  Efficient and Privacy-Preserving Outsourced Calculation of Rational Numbers , 2018, IEEE Transactions on Dependable and Secure Computing.