Ru-doped lanthanum strontium titanates for the anode of solid oxide fuel cells

[1]  G. Choi,et al.  Ex-solution of Ni nanoparticles in a La0.2Sr0.8Ti1 − xNixO3 − δ alternative anode for solid oxide fuel cell , 2014 .

[2]  H. Hwang,et al.  Catalytic activity of perovskite-type doped La0.08Sr0.92Ti1−xMxO3−δ (M = Mn, Fe, and Co) oxides for methane oxidation , 2014 .

[3]  Dragos Neagu,et al.  In situ growth of nanoparticles through control of non-stoichiometry. , 2013, Nature chemistry.

[4]  Jingli Luo,et al.  Cobalt doped LaSrTiO3-δ as an anode catalyst: Effect of Co nanoparticle precipitation on SOFCs operating on H2S-containing hydrogen , 2013 .

[5]  G. Gauthier,et al.  Exsolution of nickel nanoparticles at the surface of a conducting titanate as potential hydrogen electrode material for solid oxide electrochemical cells , 2013 .

[6]  Hailei Zhao,et al.  Electrical conductivity and cell performance of La0.3Sr0.7Ti1−xCrxO3−δ perovskite oxides used as anode and interconnect material for SOFCs , 2013 .

[7]  J. Irvine,et al.  The catalytic effect of impregnated (La, Sr)(Ti, Mn)O3±δ with CeO2 and Pd as potential anode materials in high temperature solid oxide fuel cells , 2012 .

[8]  Qiang Sun,et al.  Solid Oxide Fuel Cell Anode Materials for Direct Hydrocarbon Utilization , 2012 .

[9]  G. Gauthier,et al.  Evidence of anti-coking behavior of La0.8Sr0.2Cr0.98Ru0.02O3 as potential anode material for Solid Oxide Fuel Cells directly fed under methane , 2012 .

[10]  F. B. Noronha,et al.  A direct ethanol anode for solid oxide fuel cell based on a chromite-manganite with catalytic ruthenium nanoparticles , 2012 .

[11]  T. Matsui,et al.  Optimization of anode material composed of Y-doped SrTiO3 and metal and/or oxide additives for solid oxide fuel cells , 2012 .

[12]  David N. Miller,et al.  B-site doping of lanthanum strontium titanate for solid oxide fuel cell anodes , 2011 .

[13]  David N. Miller,et al.  Investigation of Microstructural and Electrochemical Properties of Impregnated (La,Sr)(Ti,Mn)O3±δ as a Potential Anode Material in High-Temperature Solid Oxide Fuel Cells , 2011 .

[14]  John T. S. Irvine,et al.  Recent Progress in the Development of Anode Materials for Solid Oxide Fuel Cells , 2011 .

[15]  Guntae Kim,et al.  Electrochemical behavior of Ba0.5Sr0.5Co0.2−xZnxFe0.8O3−δ (x = 0–0.2) perovskite oxides for the cathode of solid oxide fuel cells , 2011 .

[16]  Hailei Zhao,et al.  Electrical conductivity and structural stability of La-doped SrTiO3 with A-site deficiency as anode materials for solid oxide fuel cells , 2010 .

[17]  Scott A. Barnett,et al.  Nickel- and Ruthenium-Doped Lanthanum Chromite Anodes: Effects of Nanoscale Metal Precipitation on Solid Oxide Fuel Cell Performance , 2010 .

[18]  Hailei Zhao,et al.  Electrical conduction behavior of La, Co co-doped SrTiO3 perovskite as anode material for solid oxide fuel cells , 2009 .

[19]  K. B. Yoo,et al.  Performance of La-doped strontium titanate (LST) anode on LaGaO3-based SOFC , 2009 .

[20]  L. Marks,et al.  La0.8Sr0.2Cr1 − xRuxO3 − δ–Gd0.1Ce0.9O1.95 solid oxide fuel cell anodes: Ru precipitation and electrochemical performance , 2009 .

[21]  Yunfei Cheng,et al.  Preparation and electrical properties of yttrium-doped strontium titanate with B-site deficiency , 2008 .

[22]  F. Tietz,et al.  Ceramic‐based Anode Materials for Improved Redox Cycling of Solid Oxide Fuel Cells , 2008 .

[23]  Hailei Zhao,et al.  Synthesis and electrical properties of Co-doped Y0.08Sr0.92TiO3 − δ as a potential SOFC anode , 2008 .

[24]  Ricardo Chacartegui,et al.  On the effect of methane internal reforming modelling in solid oxide fuel cells , 2008 .

[25]  H. Fukunaga,et al.  Self-Regeneration Pd-Perovskite Anode for SOFC , 2007 .

[26]  U. Stimming,et al.  Recent anode advances in solid oxide fuel cells , 2007 .

[27]  L. C. Jonghe,et al.  B-Site Doping and Catalytic Activity of Sr ( Y ) TiO3 , 2007 .

[28]  Christopher S. Johnson,et al.  Sulfur-tolerant anode materials for solid oxide fuel cell application , 2007 .

[29]  Dimitris Sarantaridis,et al.  Redox Cycling of Ni‐Based Solid Oxide Fuel Cell Anodes: A Review , 2007 .

[30]  P. Canu,et al.  Partial oxidation of methane over supported ruthenium catalysts , 2007 .

[31]  J. Canales‐Vázquez,et al.  Mn-substituted titanates as efficient anodes for direct methane SOFCs , 2006 .

[32]  Jeffrey W. Fergus,et al.  Oxide anode materials for solid oxide fuel cells , 2006 .

[33]  R. Gorte,et al.  Direct hydrocarbon solid oxide fuel cells. , 2004, Chemical reviews.

[34]  S. Singhal,et al.  Advanced anodes for high-temperature fuel cells , 2004, Nature materials.

[35]  Xenophon E. Verykios,et al.  Production of hydrogen for fuel cells by steam reforming of ethanol over supported noble metal catalysts , 2003 .

[36]  Takashi Hibino,et al.  Ru-catalyzed anode materials for direct hydrocarbon SOFCs , 2003 .

[37]  J. Canales‐Vázquez,et al.  Electrical properties in La2Sr4Ti6O19$minus;$delta;: a potential anode for high temperature fuel cells , 2003 .

[38]  J. Stevenson,et al.  Thermal, Electrical, and Electrocatalytical Properties of Lanthanum-Doped Strontium Titanate , 2002 .

[39]  John T. S. Irvine,et al.  Improved Oxidation of Hydrocarbons with New Electrodes in High Temperature Fuel Cells , 2001 .

[40]  A. Kovalevsky,et al.  The stability and mixed conductivity in La and Fe doped SrTiO3 in the search for potential SOFC anode materials , 2001 .

[41]  M. Watanabe,et al.  High‐Performance Electrode for Medium‐Temperature Operating Solid Oxide Fuel Cells Polarization Property of Ceria‐Based Anode with Highly Dispersed Ruthenium Catalysts in Gas , 1996 .

[42]  M. Ippommatsu,et al.  High‐Power‐Density‐Solid‐Oxide‐Electrolyte Fuel Cells , 1992 .