A probabilistic algorithm to test local algebraic observability in polynomial time
暂无分享,去创建一个
[1] M. Fliess. Automatique et corps différentiels , 1989 .
[2] H. T. Kung,et al. Fast Algorithms for Manipulating Formal Power Series , 1978, JACM.
[3] Alberto Isidori,et al. Nonlinear control systems: an introduction (2nd ed.) , 1989 .
[4] L. Ljung,et al. PARAMETRIZATION OF NONLINEAR MODEL STRUCTURES AS LINEAR REGRESSIONS , 1991 .
[5] Alexandre Sedoglavic. A Probabilistic Algorithm to Test Local Algebraic Observability in Polynomial Time , 2002, J. Symb. Comput..
[6] Joachim von zur Gathen,et al. Modern Computer Algebra , 1998 .
[7] Donald E. Knuth. The Art of Computer Programming 2 / Seminumerical Algorithms , 1971 .
[8] F. Ollivier. Le probleme de l'identifiabilite structurelle globale : approche theorique, methodes effectives et bornes de complexite , 1990 .
[9] Joseph Johnson,et al. Kahler Differentials and Differential Algebra , 1969 .
[10] Volker Strassen,et al. Algebraic Complexity Theory , 1991, Handbook of Theoretical Computer Science, Volume A: Algorithms and Complexity.
[11] Lennart Ljung,et al. PARAMETRIZATION OF NONLINEAR MODEL STRUCTURES AS LINEAR REGRESSIONS , 1990 .
[12] K R Godfrey,et al. Global identifiability of the parameters of nonlinear systems with specified inputs: a comparison of methods. , 1990, Mathematical biosciences.
[13] Piet Hemker,et al. Mathematical modelling in blood coagulation ; Simulation and parameter estimation , 1997 .
[14] A. Raksanyi. Utilisation du calcul formel pour l'étude des systèmes d'équations polynomiales (applications en modélisation) , 1986 .
[15] Donald E. Knuth,et al. The art of computer programming. Vol.2: Seminumerical algorithms , 1981 .
[16] Giovanni Gallo,et al. Efficient algorithms and bounds for Wu-Ritt characteristic sets , 1991 .
[17] R. E. Kalman,et al. On the general theory of control systems , 1959 .
[18] S. Vajda,et al. IDENTIFIABILITY OF POLYNOMIAL SYSTEMS: STRUCTURAL AND NUMERICAL ASPECTS , 1987 .
[19] V. Pan,et al. Polynomial and Matrix Computations , 1994, Progress in Theoretical Computer Science.
[20] C. W. Gear,et al. The index of general nonlinear DAEs , 1995 .
[21] Eric Schost. Sur la resolution des systemes polynomiaux a parametres , 2000 .
[22] L. Lipshitz,et al. Power series solutions of algebraic differential equations , 1984 .
[23] François Boulier,et al. Efficient computation of regular differential systems by change of rankings using Kähler differentials , 2000 .
[24] D. Eisenbud. Commutative Algebra: with a View Toward Algebraic Geometry , 1995 .
[25] H. Rabitz,et al. Similarity transformation approach to identifiability analysis of nonlinear compartmental models. , 1989, Mathematical biosciences.
[26] Richard Zippel,et al. Effective polynomial computation , 1993, The Kluwer international series in engineering and computer science.
[27] H. Pohjanpalo. System identifiability based on the power series expansion of the solution , 1978 .
[28] François Boulier,et al. Representation for the radical of a finitely generated differential ideal , 1995, ISSAC '95.
[29] Brahim Sadik,et al. A Bound for the Order of Characteristic Set Elements of an Ordinary Prime Differential Ideal and some Applications , 2000, Applicable Algebra in Engineering, Communication and Computing.
[30] Kyriakos Kalorkoti. ALGEBRAIC COMPLEXITY THEORY (Grundlehren der Mathematischen Wissenschaften 315) , 1999 .
[31] V. Becerra,et al. Optimal control of nonlinear differential algebraic equation systems , 2000, Proceedings of the 39th IEEE Conference on Decision and Control (Cat. No.00CH37187).
[32] R. Kálmán. On the general theory of control systems , 1959 .
[33] Marc Giusti,et al. A Gröbner Free Alternative for Polynomial System Solving , 2001, J. Complex..
[34] François Ollivier. Identifiabilité et identification : du Calcul Formel au Calcul Numérique ? , 2000 .
[35] Céline Noiret. Utilisation du calcul formel pour l'identifiabilité de modèles paramètriques et nouveaux algorithmes en estimation de paramètres , 2000 .
[36] R. Gregory Taylor,et al. Modern computer algebra , 2002, SIGA.
[37] Michael Clausen,et al. Algebraic complexity theory , 1997, Grundlehren der mathematischen Wissenschaften.
[38] Palaiseau Cedex,et al. Computing Parametric Geometric Resolutions , 2001 .
[39] P. Daoutidis,et al. Feedback control of nonlinear differential-algebraic-equation systems , 1995 .
[40] Erich Kaltofen. Computational Differentiation and Algebraic Complexity Theory * , .
[41] Keith O. Geddes. Convergence behavior of the Newton iteration for first order differential equations , 1979, EUROSAM.
[42] Evelyne Hubert,et al. Factorization-free Decomposition Algorithms in Differential Algebra , 2000, J. Symb. Comput..
[43] Yves Lecourtier,et al. Identifiability and distinguishability testing via computer algebra , 1985 .
[44] Lennart Ljung,et al. System Identification: Theory for the User , 1987 .
[45] Luis M. Pardo,et al. Kronecker's and Newton's Approaches to Solving: A First Comparison , 2001, J. Complex..
[46] Darrell Williamson,et al. Observation of bilinear systems with application to biological control , 1977, Autom..
[47] Walter Baur,et al. The Complexity of Partial Derivatives , 1983, Theor. Comput. Sci..
[48] W. J. H. Stortelder,et al. Parameter estimation in chemical engineering ; a case study for resin production , 1996 .
[49] A. Krener,et al. Nonlinear controllability and observability , 1977 .
[50] Lennart Ljung,et al. On global identifiability for arbitrary model parametrizations , 1994, Autom..
[51] A. Isidori. Nonlinear Control Systems , 1985 .
[52] A. Goldbeter. A model for circadian oscillations in the Drosophila period protein (PER) , 1995, Proceedings of the Royal Society of London. Series B: Biological Sciences.
[53] Eric Walter,et al. Identifiability of State Space Models , 1982 .