Protein Function Easily Investigated by Genomics Data Mining Using the ProteINSIDE Online Tool

Nowadays, genomic and proteomic studies produce vast amounts of data. To get the biological meaning of these data and to generate testable new hypothesis, scientists must use several tools often not designed for ruminant studies. Here we present ProteINSIDE: an online tool to analyse lists of protein or gene identifiers from well-annotated species (human, rat, and mouse) and ruminants (cow, sheep, and goat). The aims of ProteINSIDE modules are to gather biological information stores in well-updated public databases, to proceed to annotations according to the Gene Ontology consortium, to predict potentially secreted proteins, and to search for proteins interactions. ProteINSIDE provides results from several software and databases in a single query. From a list of identifiers, ProteINSIDE uses orthologs or homologs to extend analyses and biological information retrieval. As a tutorial, we presented how to launch, to recover, to view, and to interpret the results provided by the two types of analysis available with ProteINSIDE (basic and custom analyses). ProteINSIDE is freely available using a simple internet browser at www.proteinside.org. The results of this article are provided on the home page of ProteINSIDE website as the example of an analysis results.

[1]  María Martín,et al.  Activities at the Universal Protein Resource (UniProt) , 2013, Nucleic Acids Res..

[2]  Joaquín Dopazo,et al.  Babelomics: an integrative platform for the analysis of transcriptomics, proteomics and genomic data with advanced functional profiling , 2010, Nucleic Acids Res..

[3]  M. Bonnet,et al.  Quest for Novel Muscle Pathway Biomarkers Using Proteomics in Beef Production , 2011 .

[4]  S. Brunak,et al.  Predicting subcellular localization of proteins based on their N-terminal amino acid sequence. , 2000, Journal of molecular biology.

[5]  Martin Kuiper,et al.  BiNGO: a Cytoscape plugin to assess overrepresentation of Gene Ontology categories in Biological Networks , 2005, Bioinform..

[6]  Gregory D. Schuler,et al.  Database resources of the National Center for Biotechnology Information: update , 2004, Nucleic acids research.

[7]  Rafael C. Jimenez,et al.  The MIntAct project—IntAct as a common curation platform for 11 molecular interaction databases , 2013, Nucleic Acids Res..

[8]  S. Brunak,et al.  SignalP 4.0: discriminating signal peptides from transmembrane regions , 2011, Nature Methods.

[9]  Matthew R. Pocock,et al.  The Bioperl toolkit: Perl modules for the life sciences. , 2002, Genome research.

[10]  Casey S. Greene,et al.  IMP: a multi-species functional genomics portal for integration, visualization and prediction of protein functions and networks , 2012, Nucleic Acids Res..

[11]  Jignesh M. Patel,et al.  Michigan molecular interactions r2: from interacting proteins to pathways , 2008, Nucleic Acids Res..

[12]  Joaquín Dopazo,et al.  FatiGO: a web tool for finding significant associations of Gene Ontology terms with groups of genes , 2004, Bioinform..

[13]  Erik L. L. Sonnhammer,et al.  Advantages of combined transmembrane topology and signal peptide prediction—the Phobius web server , 2007, Nucleic Acids Res..

[14]  M. Ashburner,et al.  Gene Ontology: tool for the unification of biology , 2000, Nature Genetics.

[15]  Judith A. Blake,et al.  Beyond the data deluge: Data integration and bio-ontologies , 2006, J. Biomed. Informatics.

[16]  Hui Wang,et al.  AgBase: supporting functional modeling in agricultural organisms , 2010, Nucleic Acids Res..

[17]  Tanya Z. Berardini,et al.  The Arabidopsis Information Resource (TAIR): improved gene annotation and new tools , 2011, Nucleic Acids Res..

[18]  F. V. Winck,et al.  Functional annotation and biological interpretation of proteomics data. , 2015, Biochimica et biophysica acta.

[19]  B. Picard,et al.  Proteome dynamics during contractile and metabolic differentiation of bovine foetal muscle. , 2009, Animal : an international journal of animal bioscience.

[20]  Rachael P. Huntley,et al.  QuickGO: a user tutorial for the web-based Gene Ontology browser , 2009, Database J. Biol. Databases Curation.

[21]  Brad T. Sherman,et al.  Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources , 2008, Nature Protocols.

[22]  Israel Steinfeld,et al.  BMC Bioinformatics BioMed Central , 2008 .

[23]  Peter D. Karp,et al.  EcoCyc: fusing model organism databases with systems biology , 2012, Nucleic Acids Res..

[24]  Gary D. Bader,et al.  Cytoscape Web: an interactive web-based network browser , 2010, Bioinform..

[25]  Peter Woollard,et al.  The minimum information required for reporting a molecular interaction experiment (MIMIx) , 2007, Nature Biotechnology.

[26]  Ernest Fraenkel,et al.  SteinerNet: a web server for integrating ‘omic’ data to discover hidden components of response pathways , 2012, Nucleic Acids Res..

[27]  Lei Deng,et al.  PrePPI: a structure-informed database of protein–protein interactions , 2012, Nucleic Acids Res..

[28]  Patrick Ruch,et al.  Managing the data deluge: data-driven GO category assignment improves while complexity of functional annotation increases , 2013, Database J. Biol. Databases Curation.

[29]  S. Brunak,et al.  Locating proteins in the cell using TargetP, SignalP and related tools , 2007, Nature Protocols.

[30]  Christie S. Chang,et al.  The BioGRID interaction database: 2013 update , 2012, Nucleic Acids Res..

[31]  Sergei Egorov,et al.  Pathway studio - the analysis and navigation of molecular networks , 2003, Bioinform..

[32]  M. Dugo,et al.  Bioinformatics tools for secretome analysis. , 2013, Biochimica et biophysica acta.

[33]  M. Bonnet,et al.  Cellular and molecular large‐scale features of fetal adipose tissue: Is bovine perirenal adipose tissue Brown1685 , 2012, Journal of cellular physiology.

[34]  Brad T. Sherman,et al.  Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists , 2008, Nucleic acids research.

[35]  W. Nickel The mystery of nonclassical protein secretion. A current view on cargo proteins and potential export routes. , 2003, European journal of biochemistry.

[36]  Xiaowei Xu,et al.  Constructing a robust protein-protein interaction network by integrating multiple public databases , 2011, BMC Bioinformatics.

[37]  Fidel Ramírez,et al.  Novel search method for the discovery of functional relationships , 2011, Bioinform..

[38]  angesichts der Corona-Pandemie,et al.  UPDATE , 1973, The Lancet.

[39]  I. Longden,et al.  EMBOSS: the European Molecular Biology Open Software Suite. , 2000, Trends in genetics : TIG.

[40]  Damian Szklarczyk,et al.  STRING v9.1: protein-protein interaction networks, with increased coverage and integration , 2012, Nucleic Acids Res..

[41]  Hawoong Jeong,et al.  A protein interaction network associated with asthma. , 2008, Journal of theoretical biology.

[42]  Johannes Goll,et al.  Protein interaction data curation: the International Molecular Exchange (IMEx) consortium , 2012, Nature Methods.

[43]  Dieter Jahn,et al.  PrediSi: prediction of signal peptides and their cleavage positions , 2004, Nucleic Acids Res..

[44]  Winston A Hide,et al.  Big data: The future of biocuration , 2008, Nature.

[45]  E. Myers,et al.  Basic local alignment search tool. , 1990, Journal of molecular biology.

[46]  Chris Mungall,et al.  AmiGO: online access to ontology and annotation data , 2008, Bioinform..

[47]  Brigitte Picard,et al.  Protein function easily investigated by genomics data mining using the ProteINSIDE web service , 2014, IWBBIO.

[48]  Rachael P. Huntley,et al.  QuickGO: a web-based tool for Gene Ontology searching , 2009, Bioinform..

[49]  Gary D Bader,et al.  NetPath: a public resource of curated signal transduction pathways , 2010, Genome Biology.

[50]  Arnaud Céol,et al.  NetAligner—a network alignment server to compare complexes, pathways and whole interactomes , 2012, Nucleic Acids Res..

[51]  Livia Perfetto,et al.  MINT, the molecular interaction database: 2012 update , 2011, Nucleic Acids Res..

[52]  Y. Benjamini,et al.  Controlling the false discovery rate: a practical and powerful approach to multiple testing , 1995 .

[53]  Miguel Pignatelli,et al.  Database: The Journal of Biological Databases and Curation , 2016 .

[54]  Rafael C. Jimenez,et al.  The IntAct molecular interaction database in 2012 , 2011, Nucleic Acids Res..

[55]  Vassilios Ioannidis,et al.  ExPASy: SIB bioinformatics resource portal , 2012, Nucleic Acids Res..

[56]  Jing Chen,et al.  ToppGene Suite for gene list enrichment analysis and candidate gene prioritization , 2009, Nucleic Acids Res..

[57]  Carlos Prieto,et al.  APID2NET: unified interactome graphic analyzer , 2007, Bioinform..

[58]  Engelbert Mephu Nguifo,et al.  DroPNet: a web portal for integrated analysis of Drosophila protein–protein interaction networks , 2012, Nucleic Acids Res..

[59]  Andreas Schmidt,et al.  Bioinformatic analysis of proteomics data , 2014, BMC Systems Biology.

[60]  Trey Ideker,et al.  Cytoscape 2.8: new features for data integration and network visualization , 2010, Bioinform..

[61]  Gary D Bader,et al.  PSICQUIC and PSISCORE: accessing and scoring molecular interactions , 2011, Nature Methods.