Evolving Dynamic Multi-Objective Optimization Problems with Objective Replacement

This paper studies the strategies for multi-objective optimization in a dynamic environment. In particular, we focus on problems with objective replacement, where some objectives may be replaced with new objectives during evolution. It is shown that the Pareto-optimal sets before and after the objective replacement share some common members. Based on this observation, we suggest the inheritance strategy. When objective replacement occurs, this strategy selects good chromosomes according to the new objective set from the solutions found before objective replacement, and then continues to optimize them via evolution for the new objective set. The experiment results showed that this strategy can help MOGAs achieve better performance than MOGAs without using the inheritance strategy, where the evolution is restarted when objective replacement occurs. More solutions with better quality are found during the same time span.

[1]  Peter J. Fleming,et al.  Multiobjective optimization and multiple constraint handling with evolutionary algorithms. II. Application example , 1998, IEEE Trans. Syst. Man Cybern. Part A.

[2]  Carlos M. Fonseca,et al.  Multiobjective genetic algorithms , 1993 .

[3]  Lothar Thiele,et al.  Comparison of Multiobjective Evolutionary Algorithms: Empirical Results , 2000, Evolutionary Computation.

[4]  Ju-Jang Lee,et al.  A new distributed evolutionary algorithm for optimization in nonstationary environments , 2002, Proceedings of the 2002 Congress on Evolutionary Computation. CEC'02 (Cat. No.02TH8600).

[5]  D. Corne,et al.  On Metrics for Comparing Non Dominated Sets , 2001 .

[6]  Kalyanmoy Deb,et al.  A fast and elitist multiobjective genetic algorithm: NSGA-II , 2002, IEEE Trans. Evol. Comput..

[7]  David W. Corne,et al.  Approximating the Nondominated Front Using the Pareto Archived Evolution Strategy , 2000, Evolutionary Computation.

[8]  Rob A. Rutenbar,et al.  A Unified Formulation , 1998 .

[9]  Eckart Zitzler,et al.  Evolutionary algorithms for multiobjective optimization: methods and applications , 1999 .

[10]  Lothar Thiele,et al.  Multiobjective evolutionary algorithms: a comparative case study and the strength Pareto approach , 1999, IEEE Trans. Evol. Comput..

[11]  Lothar Thiele,et al.  An evolutionary algorithm for multiobjective optimization: the strength Pareto approach , 1998 .

[12]  Hajime Kita,et al.  Multi-objective optimization by genetic algorithms: a review , 1996, Proceedings of IEEE International Conference on Evolutionary Computation.

[13]  S. Tsutsui,et al.  Function optimization in nonstationary environment using steady state genetic algorithms with aging of individuals , 1998, 1998 IEEE International Conference on Evolutionary Computation Proceedings. IEEE World Congress on Computational Intelligence (Cat. No.98TH8360).

[14]  C. Fonseca,et al.  GENETIC ALGORITHMS FOR MULTI-OBJECTIVE OPTIMIZATION: FORMULATION, DISCUSSION, AND GENERALIZATION , 1993 .

[15]  Zbigniew Michalewicz,et al.  Genetic Algorithms + Data Structures = Evolution Programs , 1996, Springer Berlin Heidelberg.

[16]  Frank Kursawe,et al.  A Variant of Evolution Strategies for Vector Optimization , 1990, PPSN.

[17]  John J. Grefenstette,et al.  Evolvability in dynamic fitness landscapes: a genetic algorithm approach , 1999, Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406).

[18]  Zbigniew Michalewicz,et al.  Genetic algorithms + data structures = evolution programs (3rd ed.) , 1996 .

[19]  Martin J. Oates,et al.  On the Assessment of Multiobjective Approaches to the Adaptive Distributed Database Management Problem , 2000, PPSN.

[20]  DebK.,et al.  A fast and elitist multiobjective genetic algorithm , 2002 .

[21]  K. De Jong,et al.  The usefulness of tag bits in changing environments , 1999, Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406).

[22]  A. Farhang-Mehr,et al.  Diversity assessment of Pareto optimal solution sets: an entropy approach , 2002, Proceedings of the 2002 Congress on Evolutionary Computation. CEC'02 (Cat. No.02TH8600).

[23]  M. Hansen,et al.  Evaluating the quality of approximations to the non-dominated set , 1998 .

[24]  Peter J. Fleming,et al.  Genetic Algorithms for Multiobjective Optimization: FormulationDiscussion and Generalization , 1993, ICGA.

[25]  Phillip D. Stroud,et al.  Kalman-extended genetic algorithm for search in nonstationary environments with noisy fitness evaluations , 2001, IEEE Trans. Evol. Comput..

[26]  Joshua D. Knowles,et al.  On metrics for comparing nondominated sets , 2002, Proceedings of the 2002 Congress on Evolutionary Computation. CEC'02 (Cat. No.02TH8600).

[27]  David E. Goldberg,et al.  Genetic Algorithms with Sharing for Multimodalfunction Optimization , 1987, ICGA.

[28]  Jürgen Teich,et al.  Pareto-Front Exploration with Uncertain Objectives , 2001, EMO.

[29]  Marco Laumanns,et al.  A Spatial Predator-Prey Approach to Multi-objective Optimization: A Preliminary Study , 1998, PPSN.

[30]  Iwona Karcz-Duleba,et al.  Dynamics of infinite populations evolving in a landscape of uni and bimodal fitness functions , 2001, IEEE Trans. Evol. Comput..

[31]  Peter J. Fleming,et al.  Multiobjective optimization and multiple constraint handling with evolutionary algorithms. I. A unified formulation , 1998, IEEE Trans. Syst. Man Cybern. Part A.

[32]  Kalyanmoy Deb,et al.  Muiltiobjective Optimization Using Nondominated Sorting in Genetic Algorithms , 1994, Evolutionary Computation.