Using the thermal Gaussian approximation for the Boltzmann operator in semiclassical initial value time correlation functions.

The thermal Gaussian approximation (TGA) recently developed by Frantsuzov et al. [Chem. Phys. Lett. 381, 117 (2003)] has been demonstrated to be a practical way for approximating the Boltzmann operator exp(-betaH) for multidimensional systems. In this paper the TGA is combined with semiclassical (SC) initial value representations (IVRs) for thermal time correlation functions. Specifically, it is used with the linearized SC-IVR (LSC-IVR, equivalent to the classical Wigner model), and the "forward-backward semiclassical dynamics" approximation developed by Shao and Makri [J. Phys. Chem. A 103, 7753 (1999); 103, 9749 (1999)]. Use of the TGA with both of these approximate SC-IVRs allows the oscillatory part of the IVR to be integrated out explicitly, providing an extremely simple result that is readily applicable to large molecular systems. Calculation of the force-force autocorrelation for a strongly anharmonic oscillator demonstrates its accuracy, and calculation of the velocity autocorrelation function (and thus the diffusion coefficient) of liquid neon demonstrates its applicability.

[1]  J. H. Van Vleck,et al.  The Correspondence Principle in the Statistical Interpretation of Quantum Mechanics , 1928 .

[2]  William H. Miller,et al.  Classical S Matrix: Numerical Application to Inelastic Collisions , 1970 .

[3]  Eric J. Heller,et al.  Wavepacket path integral formulation of semiclassical dynamics , 1975 .

[4]  E. Heller Time dependent variational approach to semiclassical dynamics , 1976 .

[5]  William H. Miller,et al.  Quantum mechanical rate constants for bimolecular reactions , 1983 .

[6]  E. Kluk,et al.  A semiclasical justification for the use of non-spreading wavepackets in dynamics calculations , 1984 .

[7]  B. Hellsing,et al.  Two simple methods for the computation of the density matrix of , 1985 .

[8]  Jorge V. José,et al.  Chaos in classical and quantum mechanics , 1990 .

[9]  Eric J. Heller,et al.  Cellular dynamics: A new semiclassical approach to time‐dependent quantum mechanics , 1991 .

[10]  William H. Miller,et al.  Comment on: Semiclassical time evolution without root searches , 1991 .

[11]  E. Heller Reply to Comment on: Semiclassical time evolution without root searches: Comments and perspective , 1991 .

[12]  John A. Zollweg,et al.  The Lennard-Jones equation of state revisited , 1993 .

[13]  K. Kay,et al.  Integral expressions for the semiclassical time‐dependent propagator , 1994 .

[14]  K. Kay,et al.  Numerical study of semiclassical initial value methods for dynamics , 1994 .

[15]  Jianshu Cao,et al.  The formulation of quantum statistical mechanics based on the Feynman path centroid density. II. Dynamical properties , 1994 .

[16]  D. Manolopoulos,et al.  Semiclassical dynamics in up to 15 coupled vibrational degrees of freedom , 1997 .

[17]  William H. Miller,et al.  Spiers Memorial Lecture Quantum and semiclassical theory of chemical reaction rates , 1998 .

[18]  William H. Miller,et al.  On the semiclassical description of quantum coherence in thermal rate constants , 1998 .

[19]  William H. Miller,et al.  Semiclassical approximations for the calculation of thermal rate constants for chemical reactions in complex molecular systems , 1998 .

[20]  William H. Miller,et al.  Semiclassical theory of electronically nonadiabatic dynamics: results of a linearized approximation to the initial value representation , 1998 .

[21]  Nancy Makri,et al.  Semiclassical influence functionals for quantum systems in anharmonic environments 1 Presented at th , 1998 .

[22]  J. Shao,et al.  Forward-Backward Semiclassical Dynamics without Prefactors , 1999 .

[23]  W. Miller,et al.  Forward-backward initial value representation for semiclassical time correlation functions , 1999 .

[24]  N Makri,et al.  Rigorous forward-backward semiclassical formulation of many-body dynamics. , 1999, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[25]  Gregory A. Voth,et al.  A derivation of centroid molecular dynamics and other approximate time evolution methods for path integral centroid variables , 1999 .

[26]  F. Grossmann SEMICLASSICAL WAVE-PACKET PROPAGATION ON POTENTIAL SURFACES COUPLED BY ULTRASHORT LASER PULSES , 1999 .

[27]  J. Shao,et al.  Forward-Backward Semiclassical Dynamics with Linear Scaling , 1999 .

[28]  Haobin Wang,et al.  Semiclassical study of electronically nonadiabatic dynamics in the condensed-phase: Spin-boson problem with Debye spectral density , 1999 .

[29]  Nancy Makri,et al.  Influence functionals with semiclassical propagators in combined forward-backward time , 1999 .

[30]  Haobin Wang,et al.  Generalized forward–backward initial value representation for the calculation of correlation functions in complex systems , 2001 .

[31]  Haobin Wang,et al.  Semiclassical description of diffraction and its quenching by the forward–backward version of the initial value representation , 2001 .

[32]  Haobin Wang,et al.  Generalized Filinov transformation of the semiclassical initial value representation , 2001 .

[33]  William H. Miller,et al.  The Semiclassical Initial Value Representation: A Potentially Practical Way for Adding Quantum Effects to Classical Molecular Dynamics Simulations , 2001 .

[34]  N. Makri,et al.  Finite Temperature Correlation Functions via Forward-Backward Semiclassical Dynamics † , 2001 .

[35]  Haobin Wang,et al.  Semiclassical description of quantum coherence effects and their quenching: A forward–backward initial value representation study , 2001 .

[36]  N. Makri Monte Carlo Evaluation of Forward−Backward Semiclassical Correlation Functions with a Quantized Coherent State Density , 2002 .

[37]  W. Miller,et al.  Coherent state semiclassical initial value representation for the Boltzmann operator in thermal correlation functions , 2002 .

[38]  Yi Zhao,et al.  Semiclassical initial value representation for the Boltzmann operator in thermal rate constants , 2002 .

[39]  Qiang Shi,et al.  Semiclassical Theory of Vibrational Energy Relaxation in the Condensed Phase , 2003 .

[40]  A. Neumaier,et al.  Gaussian resolutions for equilibrium density matrices , 2003, quant-ph/0306124.

[41]  N. Makri,et al.  Forward-backward semiclassical dynamics for quantum fluids using pair propagators: Application to liquid para-hydrogen , 2003 .

[42]  Qiang Shi,et al.  Vibrational energy relaxation in liquid oxygen from a semiclassical molecular dynamics simulation , 2003 .

[43]  Michele Ceotto,et al.  Quantum instanton approximation for thermal rate constants of chemical reactions , 2003 .

[44]  N. Makri,et al.  Forward-backward semiclassical dynamics for condensed phase time correlation functions , 2003 .

[45]  P. Rossky,et al.  Practical evaluation of condensed phase quantum correlation functions: A Feynman–Kleinert variational linearized path integral method , 2003 .

[46]  P. Rossky,et al.  Quantum diffusion in liquid para-hydrogen: An application of the Feynman-Kleinert linearized path integral approximation , 2004 .

[47]  Ian R. Craig,et al.  Quantum statistics and classical mechanics: real time correlation functions from ring polymer molecular dynamics. , 2004, The Journal of chemical physics.

[48]  N. Makri,et al.  Quantum dynamics in simple fluids. , 2004, The Journal of chemical physics.

[49]  Vladimir A Mandelshtam,et al.  Quantum statistical mechanics with Gaussians: equilibrium properties of van der Waals clusters. , 2004, The Journal of chemical physics.

[50]  N. Makri,et al.  Phase space features and statistical aspects of forward - Backward semiclassical dynamics , 2004 .

[51]  N. Makri,et al.  Simulation of dynamical properties of normal and superfluid helium. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[52]  William H Miller,et al.  Quantum dynamics of complex molecular systems. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[53]  P. Frantsuzov,et al.  Size-temperature phase diagram for small Lennard-Jones clusters. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[54]  D. Coker,et al.  Linearized path integral approach for calculating nonadiabatic time correlation functions. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[55]  N. Makri,et al.  Long-time behaviour of quantized distributions in forward–backward semiclassical dynamics , 2006 .

[56]  N. Makri,et al.  Symmetries and detailed balance in forward–backward semiclassical dynamics , 2006 .

[57]  William H Miller,et al.  Including quantum effects in the dynamics of complex (i.e., large) molecular systems. , 2006, The Journal of chemical physics.

[58]  M. Gaigeot,et al.  Generating approximate Wigner distributions using Gaussian phase packets propagation in imaginary time , 2006 .

[59]  P. Frantsuzov,et al.  Structural transformations and melting in neon clusters: quantum versus classical mechanics. , 2006, Physical review letters.

[60]  J. Shao,et al.  A new time evolving Gaussian series representation of the imaginary time propagator. , 2006, The Journal of chemical physics.

[61]  Bruce J. Berne,et al.  On the Calculation of Time Correlation Functions , 2007 .