A semi-automated design of instance-based fuzzy parameter tuning for metaheuristics based on decision tree induction

Two main concepts are established in the literature for the Parameter Setting Problem of metaheuristics: Parameter Tuning Strategies (PTS) and Parameter Control Strategies (PCS). While PTS result in a fixed parameter setting for a set of problem instances, PCS are incorporated into the metaheuristic and adapt parameter values according to instance-specific performance feedback. The idea of Instance-specific Parameter Tuning Strategies (IPTS) is aiming to combine advantages of both tuning and control strategies by enabling the adoption of parameter values tailored to instance-specific characteristics a priori to running the metaheuristic. This requires, however, a significant knowledge about the impact of instance characteristics on heuristic performance. This paper presents an approach that semi-automatically designs the fuzzy logic rule base to obtain instance-specific parameter values by means of decision trees. This enables the user to automate the process of converting insights about instance-specific information and its impact on heuristic performance into a fuzzy rule base IPTS system. The system incorporates the decision maker’s preference about the trade-off between computational time and solution quality.

[1]  Gerhard Reinelt,et al.  TSPLIB - A Traveling Salesman Problem Library , 1991, INFORMS J. Comput..

[2]  John N. Hooker,et al.  Testing heuristics: We have it all wrong , 1995, J. Heuristics.

[3]  William J. Cook,et al.  The Traveling Salesman Problem: A Computational Study , 2007 .

[4]  George C. Runger,et al.  Using Experimental Design to Find Effective Parameter Settings for Heuristics , 2001, J. Heuristics.

[5]  K. I. Ramachandran,et al.  Automatic rule learning using decision tree for fuzzy classifier in fault diagnosis of roller bearing , 2007 .

[6]  Abraham P. Punnen,et al.  The traveling salesman problem and its variations , 2007 .

[7]  Sang Joon Kim,et al.  A Mathematical Theory of Communication , 2006 .

[8]  Fernando Díaz,et al.  Automatic parameter tuning with a Bayesian case-based reasoning system. A case of study , 2009, Expert Syst. Appl..

[9]  Edward P. K. Tsang,et al.  Guided local search and its application to the traveling salesman problem , 1999, Eur. J. Oper. Res..

[10]  ATSPDavid S. JohnsonAT Experimental Analysis of Heuristics for the Stsp , 2001 .

[11]  Brian Everitt,et al.  Cluster analysis , 1974 .

[12]  Robert LIN,et al.  NOTE ON FUZZY SETS , 2014 .

[13]  John N. Hooker,et al.  Needed: An Empirical Science of Algorithms , 1994, Oper. Res..

[14]  David Salt,et al.  Instance-specific multi-objective parameter tuning based on fuzzy logic , 2012, Eur. J. Oper. Res..

[15]  Max Bramer,et al.  Principles of Data Mining (Undergraduate Topics in Computer Science) , 2007 .

[16]  Max Bramer,et al.  Inducer: a Rule Induction Workbench for Data Mining , 2009 .

[17]  Manuel Laguna,et al.  Fine-Tuning of Algorithms Using Fractional Experimental Designs and Local Search , 2006, Oper. Res..

[18]  Schmitting Das Traveling-Salesman-Problem - Anwendungen und heuristische Nutzung von Voronoi-/Delaunay-Strukturen zur Lösung euklidischer, zweidimensionaler Traveling-Salesman-Probleme , 1999 .

[19]  Kyung-Sup Kim,et al.  The efficient search method of simulated annealing using fuzzy logic controller , 2009, Expert Syst. Appl..

[20]  Yuri Malitsky,et al.  ISAC - Instance-Specific Algorithm Configuration , 2010, ECAI.

[21]  Petra Perner,et al.  Data Mining - Concepts and Techniques , 2002, Künstliche Intell..

[22]  Alex M. Andrew,et al.  Modern Heuristic Search Methods , 1998 .

[23]  Yuri Malitsky,et al.  Instance-specific algorithm configuration , 2014, Constraints.

[24]  Max Bramer,et al.  Principles of Data Mining , 2013, Undergraduate Topics in Computer Science.

[25]  Thomas Stützle,et al.  Automatic Algorithm Configuration Based on Local Search , 2007, AAAI.

[26]  Yuri Malitsky,et al.  Instance-Specic Algorithm Conguration , 2012 .

[27]  David S. Johnson,et al.  A theoretician's guide to the experimental analysis of algorithms , 1999, Data Structures, Near Neighbor Searches, and Methodology.

[28]  Mauricio G. C. Resende,et al.  Designing and reporting on computational experiments with heuristic methods , 1995, J. Heuristics.

[29]  Carlos Ansótegui,et al.  A Gender-Based Genetic Algorithm for the Automatic Configuration of Algorithms , 2009, CP.

[30]  Donald Michie,et al.  Expert systems in the micro-electronic age , 1979 .

[31]  Enda Ridge,et al.  Design of Experiments for the Tuning of Optimisation Algorithms , 2007 .

[32]  Mathias Kern,et al.  Parameter Adaptation in Heuristic Search { A Population-Based Approach { , 2006 .

[33]  Jon Jouis Bentley,et al.  Fast Algorithms for Geometric Traveling Salesman Problems , 1992, INFORMS J. Comput..

[34]  Zbigniew Michalewicz,et al.  Parameter Control in Evolutionary Algorithms , 2007, Parameter Setting in Evolutionary Algorithms.

[35]  Margaret H. Dunham,et al.  Data Mining: Introductory and Advanced Topics , 2002 .