Minimizing burr size in drilling using artificial neural network (ANN)-particle swarm optimization (PSO) approach

The burrs at the hole exit degrade the performance in precision part and affect the reliability of the product. Hence, it is essential to select the optimal process parameters for minimal burr size at the manufacturing stage so as to reduce the deburring cost and time. This paper illustrates the application of particle swarm optimization (PSO) to select the best combination values of feed and point angle for a specified drill diameter in order to simultaneously minimize burr height and burr thickness during drilling of AISI 316L stainless steel. The burr size models required for the PSO optimization were developed using artificial neural network (ANN) with the drilling experiments planned as per full factorial design (FFD). The PSO optimization results clearly indicate the importance of larger point angle for bigger drill diameter values in controlling the burr size.

[1]  L. K. Lauderbaugh,et al.  Analysis of the effects of process parameters on exit burrs in drilling using a combined simulation and experimental approach , 2009 .

[2]  Michael N. Vrahatis,et al.  On the computation of all global minimizers through particle swarm optimization , 2004, IEEE Transactions on Evolutionary Computation.

[3]  David Dornfeld,et al.  Drilling Burr Formation in Titanium Alloy, Ti-6AI-4V , 1999 .

[4]  T.-R. Lin,et al.  Application of grey-Taguchi method to optimise drilling of aluminium alloy 6061 with multiple performance characteristics , 2004 .

[5]  N Tosun,et al.  Determination of optimum parameters for multi-performance characteristics in drilling by using grey relational analysis , 2006 .

[6]  V. N. Gaitonde,et al.  Methodology of Taguchi optimization for multi-objective drilling problem to minimize burr size , 2007 .

[7]  J. Paulo Davim,et al.  Predicting burr size in drilling of AISI 316L stainless steel using response surface analysis , 2009 .

[8]  Donald E. Grierson,et al.  Comparison among five evolutionary-based optimization algorithms , 2005, Adv. Eng. Informatics.

[9]  J. Paulo Davim,et al.  Delamination analysis in high speed drilling of carbon fiber reinforced plastics (CFRP) using artificial neural network model , 2008 .

[10]  Riccardo Poli,et al.  Particle swarm optimization , 1995, Swarm Intelligence.

[11]  S. S. Pande,et al.  Investigations on reducing burr formation in drilling , 1986 .

[12]  F. Chen,et al.  Analysis of the effects of process variations on delta morphology and stratigraphy in Delft3D computational models , 2014 .

[13]  Madhan Shridhar Phadke,et al.  Quality Engineering Using Robust Design , 1989 .

[14]  Sangkee Min,et al.  Optimization and control of drilling burr formation of AISI 304L and AISI 4118 based on drilling burr control charts , 2001 .

[15]  Tsann-Rong Lin,et al.  Cutting behavior of a TiN-coated carbide drill with curved cutting edges during the high-speed machining of stainless steel , 2002 .

[16]  J. Paulo Davim,et al.  Investigations into the effect of cutting conditions on surface roughness in turning of free machining steel by ANN models , 2008 .

[17]  Jinsoo Kim,et al.  Development of a drilling burr control chart for low alloy steel, AISI 4118 , 2001 .

[18]  Laurene V. Fausett,et al.  Fundamentals Of Neural Networks , 1994 .

[19]  Robert J. Schalkoff,et al.  Artificial neural networks , 1997 .

[20]  V. N. Gaitonde,et al.  Taguchi robust design for multiresponse drilling optimisation to minimise burr size using utility concept , 2007, Int. J. Manuf. Res..

[21]  Yuebin Guo,et al.  Finite Element Modeling of Burr Formation Process in Drilling 304 Stainless Steel , 2000 .

[22]  Sung-Lim Ko,et al.  Analysis of burr formation in drilling with a new-concept drill , 2001 .

[23]  L. K. Gillespie,et al.  Deburring precision miniature parts , 1979 .

[24]  Francisco Mata,et al.  Investigative Study on Machinability Aspects of Unreinforced and Reinforced PEEK Composite Machining using ANN Model , 2008 .

[25]  João Paulo Davim,et al.  A comparative study of the ANN and RSM modeling approaches for predicting burr size in drilling , 2008 .

[26]  J. Paulo Davim,et al.  Study on the influence of MQL and cutting conditions on machinability of brass using Artificial Neural Network , 2010 .

[27]  V. N. Gaitonde,et al.  Development of artificial neural network models to study the effect of process parameters on burr size in drilling , 2008 .

[28]  David Dornfeld,et al.  Burr Formation in Drilling Miniature Holes , 1997 .

[29]  Sangkee Min,et al.  FINITE ELEMENT MODELING OF BURR FORMATION IN METAL CUTTING , 2001 .

[30]  L. Ken Lauderbaugh Saunders,et al.  A finite element model of exit burrs for drilling of metals , 2003 .

[31]  V. N. Gaitonde,et al.  Taguchi optimization in drilling of AISI 316L stainless steel to minimize burr size using multi-performance objective based on membership function , 2008 .

[32]  P. T. Blotter,et al.  The Formation and Properties of Machining Burrs , 1976 .

[33]  J. R. Norris Optimization and Control , .