Free vibration analysis of stringer stiffened general shells of revolution using a meridional finite strip method

Abstract A deep doubly curved shell element is developed for free vibration analysis of general shells of revolution. The mid-surface of the shell may have an arbitrary shape as well as a variable thickness, and the shell can be closed circumferentially or not. For both the circumferential and meridian directions of the shell element, Lagrange polynomials are used to interpolate the displacement variables. Stringer stiffeners are modeled as discrete curved beams to investigate the free vibration of stiffened shells. The frequencies are compared with the published data, and new examples of axisymmetric shells with positive and negative Gaussian curvature are presented.

[1]  M. D. Olson,et al.  Nonlinear dynamic analysis of blast loaded cylindrical shell structures , 1991 .

[2]  Jae-Hoon Kang,et al.  Three-Dimensional Vibration Analysis of Thick Shells of Revolution , 1999 .

[3]  G. Sinha,et al.  Finite Element Free Vibration Analysis of Stiffened Shells , 1994 .

[4]  E. Hinton,et al.  A new nine node degenerated shell element with enhanced membrane and shear interpolation , 1986 .

[5]  Ted Belytschko,et al.  Assumed strain stabilization procedure for the 9-node Lagrange shell element , 1989 .

[6]  B. Gangadhara Prusty,et al.  Free vibration and buckling response of hat-stiffened composite panels under general loading , 2008 .

[7]  D.-Y. Tan FREE VIBRATION ANALYSIS OF SHELLS OF REVOLUTION , 1998 .

[8]  O. C. Zienkiewicz,et al.  Reduced integration technique in general analysis of plates and shells , 1971 .

[9]  J. N. Bandyopadhyay,et al.  ON THE FREE VIBRATION OF STIFFENED SHALLOW SHELLS , 2002 .

[10]  N. Ganesan,et al.  FREE VIBRATION CHARACTERISTICS OF STIFFENED CYLINDRICAL SHELLS , 1997 .

[11]  Jae-Hoon Kang,et al.  Corrigendum to ¿Three-dimensional vibrations of thick spherical shell segments with variable thickness¿ [International Journal of Solids and Structures 37 (2000) 4811¿4823] , 2006 .

[12]  Robin S. Langley,et al.  FREE VIBRATION OF THIN, ISOTROPIC, OPEN, CONICAL PANELS , 1998 .

[13]  Mohamad S. Qatu,et al.  Recent research advances in the dynamic behavior of shells: 1989-2000, Part 1: Laminated composite shells , 2002 .

[14]  R. Guyan Reduction of stiffness and mass matrices , 1965 .

[15]  Medhat A. Haroun,et al.  Reduced and selective integration techniques in the finite element analysis of plates , 1978 .

[16]  Jae-Hoon Kang,et al.  Three-dimensional vibrations of thick spherical shell segments with variable thickness , 2000 .

[17]  M. Mukhopadhyay,et al.  Free vibration analysis of stiffened shells by the finite element technique , 2004 .

[18]  W. H. Hoppmann,et al.  Some Characteristics of the Flexural Vibrations of Orthogonally Stiffened Cylindrical Shells , 1958 .

[19]  M. D. Olson,et al.  Vibration Analysis of Orthogonally Stiffened Cylindrical Shells Using Super Finite Elements , 1994 .

[20]  Ray W. Clough,et al.  Improved numerical integration of thick shell finite elements , 1971 .

[21]  Athol J. Carr,et al.  FINITE ELEMENT ANALYSIS OF LAMINATED SHELLS OF REVOLUTION WITH LAMINATED STIFFENERS , 1989 .

[22]  Worsak Kanok-Nukulchai,et al.  A simple and efficient finite element for general shell analysis , 1979 .

[23]  M. Mukhopadhyay,et al.  Finite Element Free Vibration Analysis of Laminated Composite Stiffened Shell , 1995 .

[24]  B. Gangadhara Prusty,et al.  FINITE ELEMENT TRANSIENT DYNAMIC ANALYSIS OF LAMINATED STIFFENED SHELLS , 2001 .

[25]  Nguyen Dinh Duc,et al.  Nonlinear dynamic response of imperfect eccentrically stiffened FGM double curved shallow shells on elastic foundation , 2013 .

[26]  A. Leissa,et al.  Vibration of shells , 1973 .

[27]  F. A. Mirza,et al.  Consistent thick shell element , 1997 .

[28]  Nguyen Dinh Duc,et al.  Corrigendum to “Nonlinear dynamic response of imperfect eccentrically stiffened FGM double curved shallow shells on elastic foundation” [Compos. Struct. 99 (2013) 88–96] , 2013 .

[29]  B.A.J. Mustafa,et al.  Prediction of natural frequency of vibration of stiffened cylindrical shells and orthogonally stiffened curved panels , 1987 .

[30]  Nuttawit Wattanasakulpong,et al.  An analytical investigation on free vibration of FGM doubly curved shallow shells with stiffeners under thermal environment , 2015 .

[31]  J. N. Bandyopadhyay,et al.  Free Vibration Analysis and Design Aids of Stiffened Conoidal Shells , 2002 .

[32]  Mohamad S. Qatu,et al.  Recent research advances in the dynamic behavior of shells: 1989–2000, Part 2: Homogeneous shells , 2002 .

[33]  O. C. Zienkiewicz,et al.  Analysis of thick and thin shell structures by curved finite elements , 1970 .

[34]  M. Mukhopadhyay,et al.  Static, free and forced vibration analysis of arbitrary non-uniform shells with tapered stiffeners , 1997 .

[35]  Dao Huy Bich,et al.  Nonlinear dynamic analysis of eccentrically stiffened imperfect functionally graded doubly curved thin shallow shells , 2013 .

[36]  Shen Peng Cheng,et al.  Dynamic analysis of stiffened plates and shells using spline gauss collocation method , 1990 .

[37]  Mohamad S. Qatu,et al.  Recent research advances on the dynamic analysis of composite shells: 2000-2009 , 2010 .

[38]  O. C. Zienkiewicz,et al.  A generalized displacement method for the finite element analysis of thin shells , 1985 .

[39]  Renato Vitaliani,et al.  A finite element formulation for shells of arbitrary geometry , 1990 .

[40]  Dipankar Chakravorty,et al.  Stiffened composite hypar shell roofs under free vibration: Behaviour and optimization aids , 2006 .

[41]  Rakesh K. Kapania,et al.  Free Vibration of Curvilinearly Stiffened Shallow Shells , 2013 .

[42]  D. J. Dawe,et al.  Finite strip vibration analysis of composite prismatic shell structures with diaphragm ends , 1993 .