Proposed Robust Entanglement-Based Magnetic Field Sensor Beyond the Standard Quantum Limit.

Recently, there have been significant developments in entanglement-based quantum metrology. However, entanglement is fragile against experimental imperfections, and quantum sensing to beat the standard quantum limit in scaling has not yet been achieved in realistic systems. Here, we show that it is possible to overcome such restrictions so that one can sense a magnetic field with an accuracy beyond the standard quantum limit even under the effect of decoherence, by using a realistic entangled state that can be easily created even with current technology. Our scheme could pave the way for the realizations of practical entanglement-based magnetic field sensors.

[1]  William J Munro,et al.  Quantum metrology with entangled coherent states. , 2011, Physical review letters.

[2]  Joseph Fitzsimons,et al.  Magnetic field sensing beyond the standard quantum limit under the effect of decoherence , 2011, 1101.2561.

[3]  M. Lukin,et al.  Efficient photon detection from color centers in a diamond optical waveguide , 2012, 1201.0674.

[4]  D. F. Kimball,et al.  Can a quantum nondemolition measurement improve the sensitivity of an atomic magnetometer? , 2004, Physical review letters.

[5]  M. Radparvar,et al.  Monolithic low-transition-temperature superconducting magnetometers for high resolution imaging magnetic fields of room temperature samples , 2003 .

[6]  S. Barrett,et al.  Superconducting cavity bus for single nitrogen-vacancy defect centers in diamond , 2009, 0912.3586.

[7]  Ueda,et al.  Squeezed spin states. , 1993, Physical review. A, Atomic, molecular, and optical physics.

[8]  Alex W Chin,et al.  Quantum metrology in non-Markovian environments. , 2011, Physical review letters.

[9]  S. Saito,et al.  Dephasing of a superconducting flux qubit. , 2007, Physical review letters.

[10]  Klaus Molmer,et al.  Entanglement and quantum computation with ions in thermal motion , 2000 .

[11]  J. Cirac,et al.  Improvement of frequency standards with quantum entanglement , 1997, quant-ph/9707014.

[12]  R. Namiki,et al.  Spin squeezing of a cold atomic ensemble with the nuclear spin of one-half. , 2008, Physical review letters.

[13]  G. Falci,et al.  1 / f noise: Implications for solid-state quantum information , 2013, 1304.7925.

[14]  L. Davidovich,et al.  General framework for estimating the ultimate precision limit in noisy quantum-enhanced metrology , 2011, 1201.1693.

[15]  W. Munro,et al.  Towards realizing a quantum memory for a superconducting qubit: storage and retrieval of quantum states. , 2013, Physical review letters.

[16]  P. Cappellaro,et al.  Coherence of nitrogen-vacancy electronic spin ensembles in diamond , 2010, 1006.4219.

[17]  Moore,et al.  Spin squeezing and reduced quantum noise in spectroscopy. , 1992, Physical review. A, Atomic, molecular, and optical physics.

[18]  R. Barends,et al.  Superconducting quantum circuits at the surface code threshold for fault tolerance , 2014, Nature.

[19]  Jonathan A. Jones,et al.  Magnetic Field Sensing Beyond the Standard Quantum Limit Using 10-Spin NOON States , 2008, Science.

[20]  Kae Nemoto,et al.  Coherent coupling of a superconducting flux qubit to an electron spin ensemble in diamond , 2011, Nature.

[21]  T. Ralph Coherent superposition states as quantum rulers , 2002 .

[22]  A S Sørensen,et al.  Coupling nitrogen-vacancy centers in diamond to superconducting flux qubits. , 2010, Physical review letters.

[23]  M W Mitchell,et al.  Spin-squeezing of a large-spin system via QND measurement DRAFT , 2011, 2012 Conference on Lasers and Electro-Optics (CLEO).

[24]  Lukin,et al.  Magnetic field imaging with nitrogen-vacancy ensembles , 2011, 1207.3339.

[25]  J. Cirac,et al.  Room-Temperature Quantum Bit Memory Exceeding One Second , 2012, Science.

[26]  Xiaoguang Wang,et al.  Optimal condition for measurement observable via error-propagation , 2013, 1311.6600.

[27]  D. Stamper-Kurn,et al.  High-resolution magnetometry with a spinor Bose-Einstein condensate. , 2007, Physical review letters.

[28]  B. E. Kane A silicon-based nuclear spin quantum computer , 1998, Nature.

[29]  T. Spiller,et al.  Fractional revivals, multiple-Schrödinger-cat states, and quantum carpets in the interaction of a qubit with N qubits , 2014, 1404.4296.

[30]  M. Siegel,et al.  Anisotropic rare-earth spin ensemble strongly coupled to a superconducting resonator. , 2012, Physical Review Letters.

[31]  J. Clarke,et al.  Superconducting quantum bits , 2008, Nature.

[32]  Xiaoguang Wang,et al.  Quantum Fisher information for superpositions of spin states , 2010, Quantum Inf. Comput..

[33]  Kae Nemoto,et al.  Effect of multimode entanglement on lossy optical quantum metrology , 2014 .

[34]  C. Harmans,et al.  Tuning the gap of a superconducting flux qubit. , 2008, Physical review letters.

[35]  Franco Nori,et al.  Quantum spin squeezing , 2010, 1011.2978.

[36]  Xiaobo Zhu,et al.  Coherent Operation of a Gap-tunable Flux Qubit , 2010, 1008.4016.

[37]  L. You,et al.  Spin squeezing: transforming one-axis twisting into two-axis twisting. , 2011, Physical review letters.

[38]  D. Leibfried,et al.  Toward Heisenberg-Limited Spectroscopy with Multiparticle Entangled States , 2004, Science.

[39]  U. Poppe,et al.  A New Generation of the HTS Multilayer DC-SQUID Magnetometers and Gradiometers , 2006 .

[40]  Rosario Fazio,et al.  Decoherence and 1/f noise in Josephson qubits. , 2002, Physical review letters.

[41]  V. Vuletić,et al.  States of an ensemble of two-level atoms with reduced quantum uncertainty. , 2008, Physical review letters.

[42]  John M. Martinis,et al.  Logic gates at the surface code threshold: Superconducting qubits poised for fault-tolerant quantum computing , 2014 .

[43]  Efficient spin squeezing with optimized pulse sequences , 2013, 1304.3532.

[44]  M. Lukin,et al.  A robust scanning diamond sensor for nanoscale imaging with single nitrogen-vacancy centres. , 2011, Nature nanotechnology.

[45]  A. Niskanen,et al.  Decoherence of flux qubits due to 1/f flux noise. , 2006, Physical review letters.

[46]  Klaus Mølmer,et al.  Quantum memory for microwave photons in an inhomogeneously broadened spin ensemble. , 2013, Physical review letters.

[47]  Arzhang Ardavan,et al.  High fidelity single qubit operations using pulsed electron paramagnetic resonance. , 2005, Physical review letters.

[48]  R. Blatt,et al.  Towards fault-tolerant quantum computing with trapped ions , 2008, 0803.2798.

[49]  Heng Shen,et al.  Generation of a squeezed state of an oscillator by stroboscopic back-action-evading measurement , 2014, Nature Physics.

[50]  C. Deng,et al.  Ultrasensitive magnetic field detection using a single artificial atom , 2012, Nature Communications.

[51]  Rafał Demkowicz-Dobrzański,et al.  The elusive Heisenberg limit in quantum-enhanced metrology , 2012, Nature Communications.

[52]  G. Tóth,et al.  Quantum metrology from a quantum information science perspective , 2014, 1405.4878.

[53]  G Catelani,et al.  Flux qubits with long coherence times for hybrid quantum circuits. , 2014, Physical review letters.

[54]  William J. Gallagher,et al.  High‐resolution scanning SQUID microscope , 1995 .

[55]  M. Paris Quantum estimation for quantum technology , 2008, 0804.2981.

[56]  T. W. Kornack,et al.  A subfemtotesla multichannel atomic magnetometer , 2003, Nature.

[57]  S. Lloyd,et al.  Quantum-Enhanced Measurements: Beating the Standard Quantum Limit , 2004, Science.

[58]  A. C. Maloof,et al.  Ultrahigh sensitivity magnetic field and magnetization measurements with an atomic magnetometer , 2009, 0910.2206.

[59]  R Hanson,et al.  Universal Dynamical Decoupling of a Single Solid-State Spin from a Spin Bath , 2010, Science.

[60]  S. Onoda,et al.  Multi-mode storage and retrieval of microwave fields in a spin ensemble , 2014, 1401.7939.

[61]  R. Rosenfeld Nature , 2009, Otolaryngology--head and neck surgery : official journal of American Academy of Otolaryngology-Head and Neck Surgery.

[62]  Generating non-classical states from spin coherent states via interaction with ancillary spins , 2014, 1406.6036.

[63]  Raymond G. Beausoleil,et al.  Diamonds with a high density of nitrogen-vacancy centers for magnetometry applications , 2009 .

[64]  Jan Kolodynski,et al.  Efficient tools for quantum metrology with uncorrelated noise , 2013, 1303.7271.

[65]  S. Lloyd,et al.  Advances in quantum metrology , 2011, 1102.2318.

[66]  A. Sørensen,et al.  Quantum interface between light and atomic ensembles , 2008, 0807.3358.

[67]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[68]  J. M. Taylor,et al.  Electron spin decoherence of single nitrogen-vacancy defects in diamond , 2008, 0805.0327.

[69]  Jacob M. Taylor,et al.  Nanoscale magnetic sensing with an individual electronic spin in diamond , 2008, Nature.

[70]  L Frunzio,et al.  An RF-Driven Josephson Bifurcation Amplifier for Quantum Measurements , 2003, cond-mat/0312623.

[71]  C. Gross,et al.  Spin squeezing, entanglement and quantum metrology with Bose–Einstein condensates , 2012, 1203.5359.

[72]  Ryo Namiki,et al.  Unconditional quantum-noise suppression via measurement-based quantum feedback. , 2013, Physical review letters.

[73]  Shinichi Tojo,et al.  Electron spin coherence exceeding seconds in high-purity silicon. , 2011, Nature materials.

[74]  Wineland,et al.  Squeezed atomic states and projection noise in spectroscopy. , 1994, Physical review. A, Atomic, molecular, and optical physics.

[75]  T. Monz,et al.  14-Qubit entanglement: creation and coherence. , 2010, Physical review letters.

[76]  M. Huber,et al.  Self-aligned nanoscale SQUID on a tip. , 2010, Nano letters.

[77]  James K Thompson,et al.  Conditional spin squeezing of a large ensemble via the vacuum Rabi splitting. , 2011, Physical review letters.

[78]  Mark J. Everitt,et al.  Collapse and Revival and Cat States with an N Spin System , 2013 .

[79]  D. Cory,et al.  Noise spectroscopy through dynamical decoupling with a superconducting flux qubit , 2011 .

[80]  A Acín,et al.  Noisy metrology beyond the standard quantum limit. , 2012, Physical review letters.