Continuous-time subspace identification in closed-loop

This paper deals with the problem of continuoustime model identification and presents a subspace-based algorithm capable of dealing with data generated by systems operating in closed-loop. The algorithm is developed by reformulating the identification problem from the continuous-time model to an equivalent one to which discrete-time subspace identification techniques can be applied. More precisely, the considered approach corresponds to the projection of the input-output data onto an orthonormal basis, defined in terms of Laguerre filters. In this framework, the PBSID subspace identification algorithm, originally developed in the case of discrete-time systems, can be reformulated for the continuoustime case. Simulation results are used to illustrate the achievable performance of the proposed approach with respect to existing methods available in the literature.

[1]  P. V. D. Hof,et al.  A generalized orthonormal basis for linear dynamical systems , 1993, Proceedings of 32nd IEEE Conference on Decision and Control.

[2]  V. Verdult,et al.  Filtering and System Identification: Subspace model identification , 2007 .

[3]  Yoshito Ohta,et al.  Realization of input-output maps using generalized orthonormal basis functions , 2005, Syst. Control. Lett..

[4]  Akira Ohsumi,et al.  Subspace identification for continuous-time stochastic systems via distribution-based approach , 2002, Autom..

[5]  M. Verhaegen Subspace model identification Part 2. Analysis of the elementary output-error state-space model identification algorithm , 1992 .

[6]  Alessandro Chiuso,et al.  Consistency analysis of some closed-loop subspace identification methods , 2005, Autom..

[7]  H. Garnier,et al.  Identification de systèmes multivariables à temps continu par approche des sous-espaces , 2008 .

[8]  Liuping Wang,et al.  Identification of Continuous-time Models from Sampled Data , 2008 .

[9]  Bart De Moor,et al.  Continuous-time frequency domain subspace system identification , 1996, Signal Process..

[10]  Y. Ohta,et al.  Continuous-time subspace system identification using generalized orthonormal basis functions , 2004 .

[11]  Liuping Wang,et al.  Continuous Time State Space Model Identification Using Closed-Loop Data , 2008, 2008 Second Asia International Conference on Modelling & Simulation (AMS).

[12]  Lennart Ljung,et al.  Subspace identification from closed loop data , 1996, Signal Process..

[13]  H. Garnier,et al.  A PMF-based subspace method for continuous-time model identification. Application to a multivariable winding process , 2001 .

[14]  S. Ding,et al.  Closed-loop subspace identification: an orthogonal projection approach , 2004 .

[15]  Rolf Johansson,et al.  Stochastic theory of continuous-time state-space identification , 1997, Proceedings of the 36th IEEE Conference on Decision and Control.

[16]  Alessandro Chiuso,et al.  Consistency analysis of closed-loop subspace identification , 2004, 2004 43rd IEEE Conference on Decision and Control (CDC) (IEEE Cat. No.04CH37601).

[17]  B. Wahlberg System identification using Laguerre models , 1991 .

[18]  Eugene A. Morelli,et al.  Aircraft system identification : theory and practice , 2006 .

[19]  Mark B. Tischler,et al.  Aircraft and Rotorcraft System Identification: Engineering Methods with Flight-Test Examples , 2006 .

[20]  Patrick Dewilde,et al.  Subspace model identification Part 1. The output-error state-space model identification class of algorithms , 1992 .

[21]  Michel Verhaegen,et al.  Subspace Algorithms for the Identification of Multivariable Dynamic Errors-in-Variables Models , 1997, Autom..

[22]  L.R.J. Haverkamp,et al.  State space identification - Theory and practice , 2001 .

[23]  J. Doyle,et al.  Robust and optimal control , 1995, Proceedings of 35th IEEE Conference on Decision and Control.

[24]  Michel Verhaegen,et al.  Identification of the deterministic part of MIMO state space models given in innovations form from input-output data , 1994, Autom..

[25]  Bo Wahlberg,et al.  On approximation of stable linear dynamical systems using Laguerre and Kautz functions , 1996, Autom..