Extending the coherence of spin defects in hBN enables advanced qubit control and quantum sensing

[1]  T. Lu,et al.  Mitigation of nitrogen vacancy photoluminescence quenching from material integration for quantum sensing , 2023, Materials for Quantum Technology.

[2]  Baishun Yang,et al.  Emergent Phenomena in Magnetic Two-Dimensional Materials and van der Waals Heterostructures , 2022, ACS Applied Electronic Materials.

[3]  A. Ramsay,et al.  Room temperature coherent control of protected qubit in hexagonal boron nitride , 2022, 2205.12747.

[4]  Kenji Watanabe,et al.  Nuclear spin polarization and control in hexagonal boron nitride , 2022, Nature Materials.

[5]  F. Jelezko,et al.  Power-law scaling of correlations in statistically polarised nano-NMR , 2022, npj Quantum Information.

[6]  M. Helm,et al.  Unveiling the Zero-Phonon Line of the Boron Vacancy Center by Cavity-Enhanced Emission. , 2022, Nano letters.

[7]  Mohammed Alghamdi,et al.  Wide field imaging of van der Waals ferromagnet Fe3GeTe2 by spin defects in hexagonal boron nitride , 2021, Nature Communications.

[8]  W. Schmidt,et al.  Electron-Nuclear Coherent Coupling and Nuclear Spin Readout through Optically Polarized VB- Spin States in hBN. , 2021, Nano letters.

[9]  A. Dréau,et al.  Decoherence of V\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${}_{{{{{{{{\rm{B}}}}}}}}}^{-}$$\end{document}B− spin d , 2021, Nature communications.

[10]  J. Tetienne,et al.  Quantum microscopy with van der Waals heterostructures , 2021, Nature Physics.

[11]  Han Liu,et al.  Excited-State Spectroscopy of Spin Defects in Hexagonal Boron Nitride. , 2021, Nano letters.

[12]  A. Ramsay,et al.  Excited State Spectroscopy of Boron Vacancy Defects in Hexagonal Boron Nitride Using Time-Resolved Optically Detected Magnetic Resonance. , 2021, Nano letters.

[13]  C. Stampfer,et al.  2D materials for future heterogeneous electronics , 2021, Nature Communications.

[14]  N. T. Son,et al.  Five-second coherence of a single spin with single-shot readout in silicon carbide , 2021, Science advances.

[15]  A. Faraon,et al.  Nuclear spin-wave quantum register for a solid-state qubit , 2021, Nature.

[16]  P. Upadhyaya,et al.  High-Contrast Plasmonic-Enhanced Shallow Spin Defects in Hexagonal Boron Nitride for Quantum Sensing. , 2021, Nano letters.

[17]  M. Tadokoro,et al.  Designs for a two-dimensional Si quantum dot array with spin qubit addressability , 2021, Scientific Reports.

[18]  F. J. Heremans,et al.  Quantum guidelines for solid-state spin defects , 2021, Nature Reviews Materials.

[19]  I. Sharp,et al.  Surface NMR using quantum sensors in diamond , 2021, Proceedings of the National Academy of Sciences.

[20]  P. Cappellaro,et al.  Nanoscale Vector AC Magnetometry with a Single Nitrogen-Vacancy Center in Diamond. , 2021, Nano letters.

[21]  I. Aharonovich,et al.  Sub-nanoscale Temperature, Magnetic Field and Pressure sensing with Spin Centers in 2D hexagonal Boron Nitride , 2021, 2102.10890.

[22]  Chuan-Feng Li,et al.  Coherent dynamics of multi-spin V\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${}_{{{{{{{{\rm{B}}}}}}}}}^{-}$$\end{d , 2021, Nature Communications.

[23]  Xingyu Gao,et al.  Femtosecond Laser Writing of Spin Defects in Hexagonal Boron Nitride , 2020, 2012.03207.

[24]  I. Aharonovich,et al.  Room temperature coherent control of spin defects in hexagonal boron nitride , 2020, Science Advances.

[25]  F. Jelezko,et al.  Benchmark for Synthesized Diamond Sensors Based on Isotopically Engineered Nitrogen‐Vacancy Spin Ensembles for Magnetometry Applications , 2020, Advanced Quantum Technologies.

[26]  P. Cappellaro,et al.  Coherence protection and decay mechanism in qubit ensembles under concatenated continuous driving , 2020, New Journal of Physics.

[27]  Johannes E. Fröch,et al.  Generation of Spin Defects in Hexagonal Boron Nitride , 2020 .

[28]  Á. Gali,et al.  Ab initio theory of the negatively charged boron vacancy qubit in hexagonal boron nitride , 2020, npj Computational Materials.

[29]  J. Reimers,et al.  Single-photon emitters in hexagonal boron nitride: a review of progress , 2019, Reports on progress in physics. Physical Society.

[30]  M. Hersam,et al.  2D materials for quantum information science , 2019, Nature Reviews Materials.

[31]  N. Langellier,et al.  Principles and techniques of the quantum diamond microscope , 2019, Nanophotonics.

[32]  Igor Aharonovich,et al.  Room Temperature Initialisation and Readout of Intrinsic Spin Defects in a Van der Waals Crystal , 2019 .

[33]  Mikael P. Backlund,et al.  Quantum diamond spectrometer for nanoscale NMR and ESR spectroscopy , 2019, Nature Protocols.

[34]  G. Galli,et al.  Spin coherence in two-dimensional materials , 2019, npj Computational Materials.

[35]  N. Kalb,et al.  One-second coherence for a single electron spin coupled to a multi-qubit nuclear-spin environment , 2018, Nature Communications.

[36]  M. Plenio,et al.  Color Centers in Hexagonal Boron Nitride Monolayers: A Group Theory and Ab Initio Analysis , 2017, 1709.05414.

[37]  U. Andersen,et al.  Narrow-bandwidth sensing of high-frequency fields with continuous dynamical decoupling , 2017, Nature Communications.

[38]  Jan Meijer,et al.  Submillihertz magnetic spectroscopy performed with a nanoscale quantum sensor , 2017, Science.

[39]  C. Degen,et al.  Quantum sensing with arbitrary frequency resolution , 2017, Science.

[40]  Ronald L. Walsworth,et al.  High-resolution magnetic resonance spectroscopy using a solid-state spin sensor , 2017, Nature.

[41]  K. Novoselov,et al.  2D materials and van der Waals heterostructures , 2016, Science.

[42]  SUPARNA DUTTASINHA,et al.  Van der Waals heterostructures , 2013, Nature.

[43]  D. Awschalom,et al.  Quantum Spintronics: Engineering and Manipulating Atom-Like Spins in Semiconductors , 2013, Science.

[44]  D. Rugar,et al.  Nanoscale Nuclear Magnetic Resonance with a Nitrogen-Vacancy Spin Sensor , 2013, Science.

[45]  D Budker,et al.  Solid-state electronic spin coherence time approaching one second , 2012, Nature Communications.

[46]  Martin B. Plenio,et al.  A large-scale quantum simulator on a diamond surface at room temperature , 2012, Nature Physics.

[47]  P Cappellaro,et al.  Suppression of spin-bath dynamics for improved coherence of multi-spin-qubit systems , 2012, Nature Communications.

[48]  M. Plenio,et al.  Robust dynamical decoupling with concatenated continuous driving , 2011, 1111.0930.

[49]  Alexandre M. Souza,et al.  Robust dynamical decoupling , 2011, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[50]  R Hanson,et al.  Universal Dynamical Decoupling of a Single Solid-State Spin from a Spin Bath , 2010, Science.

[51]  D. D. Awschalom,et al.  Quantum computing with defects , 2010, Proceedings of the National Academy of Sciences.

[52]  D. Longmore The principles of magnetic resonance. , 1989, British medical bulletin.

[53]  S. Meiboom,et al.  Modified Spin‐Echo Method for Measuring Nuclear Relaxation Times , 1958 .