Voltage-controlled active mid-infrared plasmonic devices

We demonstrate active voltage-controlled spectral tuning of mid-infrared plasmonic structures. Extraordinary optical transmission gratings were fabricated on n-doped GaAs epilayers with a HfO2 gate dielectric between the grating and the doped semiconductor. The permittivity of the GaAs was tuned by depleting charge carriers below the top grating gate upon the application of a reverse bias to the gate. Devices were characterized both electrically and optically, and resonant transmission peak spectral and transmitted intensity shifts were achieved. Possible applications for, as well as the limitations of, the demonstrated technology are discussed.

[1]  S. Thongrattanasiri,et al.  Plasmonic mid-infrared beam steering , 2010 .

[2]  A. Dereux,et al.  Design and Characterization of Dielectric-Loaded Plasmonic Directional Couplers , 2009, Journal of Lightwave Technology.

[3]  T. H. Isaac,et al.  Optical control over transmission of terahertz radiation through arrays of subwavelength holes of varying size , 2009 .

[4]  Merrielle Spain,et al.  Tunable color filters based on metal-insulator-metal resonators. , 2009, Nano letters.

[5]  W. Goodhue,et al.  Mid-infrared doping tunable transmission through subwavelength metal hole arrays on InSb. , 2009, Optics express.

[6]  E. A. Shaner,et al.  Active control and spatial mapping of mid-infrared propagating surface plasmons , 2009, 2009 Conference on Lasers and Electro-Optics and 2009 Conference on Quantum electronics and Laser Science Conference.

[7]  Hong Lu,et al.  Electronic control of extraordinary terahertz transmission through subwavelength metal hole arrays. , 2008, Optics express.

[8]  P. Lalanne,et al.  Microscopic theory of the extraordinary optical transmission , 2008, Nature.

[9]  D. Horsley,et al.  A MEMS light modulator based on diffractive nanohole gratings. , 2008, Optics express.

[10]  Daniel Wasserman,et al.  Electrically tunable extraordinary optical transmission gratings , 2007 .

[11]  Yi Xuan,et al.  Interface studies of GaAs metal-oxide-semiconductor structures using atomic-layer-deposited HfO2/Al2O3 nanolaminate gate dielectric , 2007 .

[12]  H. Lezec,et al.  All-optical modulation by plasmonic excitation of CdSe quantum dots , 2007 .

[13]  Daniel Wasserman,et al.  Midinfrared doping-tunable extraordinary transmission from sub-wavelength Gratings , 2007 .

[14]  R. K. Nahar,et al.  Study of electrical and microstructure properties of high dielectric hafnium oxide thin film for MOS devices , 2007 .

[15]  William L. Barnes,et al.  REVIEW ARTICLE: Surface plasmon polariton length scales: a route to sub-wavelength optics , 2006 .

[16]  J. Dionne,et al.  Plasmon slot waveguides: Towards chip-scale propagation with subwavelength-scale localization , 2006 .

[17]  P. Alsing,et al.  Electric field tuning of plasmonic response of nanodot array in liquid crystal matrix. , 2005, Nano letters.

[18]  Zhaowei Liu,et al.  Focusing surface plasmons with a plasmonic lens. , 2005, Nano letters.

[19]  P. Nordlander,et al.  A Hybridization Model for the Plasmon Response of Complex Nanostructures , 2003, Science.

[20]  Peide D. Ye,et al.  GaAs metal–oxide–semiconductor field-effect transistor with nanometer-thin dielectric grown by atomic layer deposition , 2003 .

[21]  S. Gangopadhyay,et al.  HfO2 gate dielectric with 0.5 nm equivalent oxide thickness , 2002 .

[22]  R A Linke,et al.  Beaming Light from a Subwavelength Aperture , 2002, Science.

[23]  D. Vanderbilt,et al.  First-principles study of structural, vibrational, and lattice dielectric properties of hafnium oxide , 2002, cond-mat/0202454.

[24]  Bernhard Lamprecht,et al.  Near-field observation of surface plasmon polariton propagation on thin metal stripes , 2001 .

[25]  H. Lezec,et al.  Extraordinary optical transmission through sub-wavelength hole arrays , 1998, Nature.

[26]  P. Kajenski Tunable optical filter using long-range surface plasmons , 1997 .

[27]  Mikko Ritala,et al.  Tailoring the dielectric properties of HfO2–Ta2O5 nanolaminates , 1996 .

[28]  J. Kwo,et al.  Low interface state density oxide‐GaAs structures fabricated by in situ molecular beam epitaxy , 1996 .

[29]  H. Raether,et al.  Light emission of nonradiative surface plasmons from sinusoidally modulated silver surfaces , 1976 .

[30]  E. Kretschmann Die Bestimmung optischer Konstanten von Metallen durch Anregung von Oberflächenplasmaschwingungen , 1971 .

[31]  M. Kuhn,et al.  A quasi-static technique for MOS C-V and surface state measurements , 1970 .

[32]  R. H. Ritchie,et al.  Surface-Plasmon Resonance Effect in Grating Diffraction , 1968 .

[33]  A. Otto Excitation of nonradiative surface plasma waves in silver by the method of frustrated total reflection , 1968 .

[34]  A R Plummer Introduction to Solid State Physics , 1967 .

[35]  H. Bethe Theory of Diffraction by Small Holes , 1944 .