Adaptive control and synchronization of chaotic systems consisting of Van der Pol oscillators coupled to linear oscillators

This paper deals with the problem of control and synchronization of coupled second-order oscillators showing a chaotic behavior. A classical feedback controller is first used to stabilize the system at its equilibrium. An adaptive observer is then designed to synchronize the states of the master and slave oscillators using a single scalar signal corresponding to an observable state variable of the driving oscillator. An interesting feature of the proposed approach is that it can be used for chaos control as well as synchronization purposes. Numerical simulations results confirming the analytical predictions are shown and pspice simulations are also performed to confirm the efficiency of the proposed control scheme.

[1]  Edward Ott,et al.  Controlling chaos , 2006, Scholarpedia.

[2]  P. Woafo,et al.  Adaptive synchronization of a modified and uncertain chaotic Van der Pol-Duffing oscillator based on parameter identification , 2005 .

[3]  Chi-Chuan Hwang,et al.  A new feedback control of a modified Chua's circuit system , 1996 .

[4]  Ricardo Femat,et al.  A strategy to control chaos in nonlinear driven oscillators with least prior knowledge , 1997 .

[5]  Wei Xing Zheng,et al.  Global chaos synchronization with channel time-delay , 2004 .

[6]  Zhi-Hong Guan,et al.  Feedback and adaptive control for the synchronization of Chen system via a single variable , 2003 .

[7]  Gualberto Solís-Perales,et al.  A chaos-based communication scheme via robust asymptotic feedback , 2001 .

[8]  Jacob Kogan,et al.  Nonlinear control systems with vector cost , 1986 .

[9]  M. Feki An adaptive chaos synchronization scheme applied to secure communication , 2003 .

[10]  R. Femat,et al.  Synchronization of chaotic systems with different order. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[11]  S. Strogatz Nonlinear Dynamics and Chaos: With Applications to Physics, Biology, Chemistry and Engineering , 1995 .

[12]  M. Bernardo A purely adaptive controller to synchronize and control chaotic systems , 1996 .

[13]  Design of a Nonlinear Observer for a Chaotic System Consisting of Van der Pol Oscillator Coupled to a Linear Oscillator , 2005 .

[14]  A. d’Onofrio Fractal growth of tumors and other cellular populations: Linking the mechanistic to the phenomenological modeling and vice versa , 2009, 1309.3329.

[15]  Boris R. Andrievsky Adaptive synchronization methods for signal transmission on chaotic carriers , 2002, Math. Comput. Simul..

[16]  Leon O. Chua,et al.  Conditions for impulsive Synchronization of Chaotic and hyperchaotic Systems , 2001, Int. J. Bifurc. Chaos.

[17]  Moez Feki,et al.  Observer-based chaotic synchronization in the presence of unknown inputs , 2003 .

[18]  M. T. Yassen,et al.  Adaptive control and synchronization of a modified Chua's circuit system , 2003, Appl. Math. Comput..

[19]  Ricardo Femat,et al.  A note on robust stability analysis of chaos synchronization , 2001 .

[20]  Alan V. Oppenheim,et al.  Circuit implementation of synchronized chaos with applications to communications. , 1993, Physical review letters.

[21]  Jamal Daafouz,et al.  Adaptive synchronization of two chaotic systems consisting of modified Van der Pol–Duffing and Chua oscillators , 2005 .

[22]  R. Rajamani,et al.  A systematic approach to adaptive observer synthesis for nonlinear systems , 1995, Proceedings of Tenth International Symposium on Intelligent Control.

[23]  Samuel Bowong,et al.  Synchronization of uncertain chaotic systems via backstepping approach , 2004 .

[24]  M. Wiercigroch,et al.  Frictional chatter in orthogonal metal cutting , 2001, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[25]  P. Shi,et al.  Adaptive observer-based control for a class of chaotic systems , 2004 .

[26]  Tomasz Kapitaniak Chaos for Engineers , 1998 .

[27]  J. L. Hudson,et al.  Stabilizing and tracking unknown steady States of dynamical systems. , 2002, Physical review letters.

[28]  Luigi Glielmo,et al.  Switchings, bifurcations, and chaos in DC/DC converters , 1998 .

[29]  Shuzhi Sam Ge,et al.  Synchronization of Two uncertain Chaotic Systems via Adaptive backstepping , 2001, Int. J. Bifurc. Chaos.

[30]  Paul Woafo,et al.  Synchronization: stability and duration time. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[31]  Ulrich Parlitz,et al.  Stabilizing unstable steady states using multiple delay feedback control. , 2004, Physical review letters.

[32]  Steven H. Strogatz,et al.  Nonlinear Dynamics and Chaos: With Applications to Physics, Biology, Chemistry, and Engineering , 1994 .

[33]  Ricardo Femat,et al.  Adaptive synchronization of high-order chaotic systems: a feedback with low-order parametrization , 2000 .

[34]  S. Mascolo,et al.  Nonlinear observer design to synchronize hyperchaotic systems via a scalar signal , 1997 .

[35]  Ying-Cheng Lai,et al.  Controlling chaos , 1994 .

[36]  Jinhu Lu,et al.  Controlling Chen's chaotic attractor using backstepping design based on parameters identification , 2001 .

[37]  Guo-Ping Jiang,et al.  Stabilizing unstable equilibria of chaotic systems from a State observer approach , 2004, IEEE Transactions on Circuits and Systems II: Express Briefs.

[38]  A. Isidori Nonlinear Control Systems , 1985 .

[39]  Ricardo Femat,et al.  Synchronization of a class of strictly different chaotic oscillators , 1997 .

[40]  M. Bourcerie,et al.  Extension of chaos anticontrol applied to the improvement of switch-mode power supply electromagnetic compatibility , 2004, 2004 IEEE International Symposium on Industrial Electronics.