Multipartite entanglement
暂无分享,去创建一个
[1] M. Nielsen. Conditions for a Class of Entanglement Transformations , 1998, quant-ph/9811053.
[2] H. Weinfurter,et al. Experimental test of quantum nonlocality in three-photon Greenberger–Horne–Zeilinger entanglement , 2000, Nature.
[3] V. Buzek,et al. Quantum secret sharing , 1998, quant-ph/9806063.
[4] S Popescu,et al. Multi-particle entanglement , 1998 .
[5] Christian Kurtsiefer,et al. Experimental detection of multipartite entanglement using witness operators. , 2004, Physical review letters.
[6] R. Werner,et al. Estimating the spectrum of a density operator , 2001, quant-ph/0102027.
[7] J I Cirac,et al. Reversible combination of inequivalent kinds of multipartite entanglement. , 2000, Physical review letters.
[8] Masahito Hayashi,et al. Quantum universal variable-length source coding , 2002, quant-ph/0202001.
[9] M. Fannes,et al. Finitely correlated states on quantum spin chains , 1992 .
[10] H. Weinfurter,et al. Observation of three-photon Greenberger-Horne-Zeilinger entanglement , 1998, quant-ph/9810035.
[11] A. Shimony,et al. Proposed Experiment to Test Local Hidden Variable Theories. , 1969 .
[12] C. Monroe,et al. Experimental entanglement of four particles , 2000, Nature.
[13] M. S. Leifer,et al. Measuring polynomial invariants of multiparty quantum states , 2003, quant-ph/0308008.
[14] E. Lieb,et al. A Fundamental Property of Quantum-Mechanical Entropy , 1973 .
[15] C. H. Bennett,et al. Unextendible product bases and bound entanglement , 1998, quant-ph/9808030.
[16] Eric M. Rains. Quantum Codes of Minimum Distance Two , 1999, IEEE Trans. Inf. Theory.
[17] P. Parrilo,et al. Distinguishing separable and entangled states. , 2001, Physical review letters.
[18] Wineland,et al. Optimal frequency measurements with maximally correlated states. , 1996, Physical review. A, Atomic, molecular, and optical physics.
[19] B. M. Fulk. MATH , 1992 .
[20] J. Cirac,et al. Classification of multiqubit mixed states: Separability and distillability properties , 1999, quant-ph/9911044.
[21] Leonid Gurvits. Classical deterministic complexity of Edmonds' Problem and quantum entanglement , 2003, STOC '03.
[22] A. Sudbery,et al. Multipartite generalization of the Schmidt decomposition , 2000, quant-ph/0006125.
[23] V. Buzek,et al. Entangled graphs: Bipartite entanglement in multiqubit systems , 2002, quant-ph/0211020.
[24] R. Cleve,et al. HOW TO SHARE A QUANTUM SECRET , 1999, quant-ph/9901025.
[25] A. Kitaev. Fault tolerant quantum computation by anyons , 1997, quant-ph/9707021.
[26] J. Eisert,et al. Schmidt measure as a tool for quantifying multiparticle entanglement , 2000, quant-ph/0007081.
[27] J. Ignacio Cirac,et al. On the structure of a reversible entanglement generating set for tripartite states , 2003, Quantum Inf. Comput..
[28] M. Lewenstein,et al. Quantum Correlations in Systems of Indistinguishable Particles , 2002, quant-ph/0203060.
[29] B. Moor,et al. Normal forms and entanglement measures for multipartite quantum states , 2001, quant-ph/0105090.
[30] P. Goldbart,et al. Geometric measure of entanglement and applications to bipartite and multipartite quantum states , 2003, quant-ph/0307219.
[31] M. B. Plenio,et al. Tripartite entanglement and quantum relative entropy , 2000 .
[32] Charles H. Bennett,et al. Exact and asymptotic measures of multipartite pure-state entanglement , 1999, Physical Review A.
[33] J. Cirac,et al. Improvement of frequency standards with quantum entanglement , 1997, quant-ph/9707014.
[34] Zhen Zhang,et al. On Characterization of Entropy Function via Information Inequalities , 1998, IEEE Trans. Inf. Theory.
[35] M. Lewenstein,et al. Classification of mixed three-qubit states. , 2001, Physical review letters.
[36] White,et al. Density matrix formulation for quantum renormalization groups. , 1992, Physical review letters.
[37] Charles H. Bennett,et al. Mixed-state entanglement and quantum error correction. , 1996, Physical review. A, Atomic, molecular, and optical physics.
[38] B. Moor,et al. Local filtering operations on two qubits , 2000, quant-ph/0011111.
[39] Wineland,et al. Squeezed atomic states and projection noise in spectroscopy. , 1994, Physical review. A, Atomic, molecular, and optical physics.
[40] A. Miyake. Classification of multipartite entangled states by multidimensional determinants , 2002, quant-ph/0206111.
[41] M. Lewenstein,et al. Detection of entanglement with few local measurements , 2002, quant-ph/0205089.
[42] Oliver Rudolph. The uniqueness theorem for entanglement measures , 2001, quant-ph/0105104.
[43] Kiel T. Williams,et al. Extreme quantum entanglement in a superposition of macroscopically distinct states. , 1990, Physical review letters.
[44] J. Bell. On the Einstein-Podolsky-Rosen paradox , 1964 .
[45] Dirk Schlingemann. Logical network implementation for cluster states and graph codes , 2003, Quantum Inf. Comput..
[46] Werner,et al. Quantum states with Einstein-Podolsky-Rosen correlations admitting a hidden-variable model. , 1989, Physical review. A, General physics.
[47] J. Eisert,et al. Multiparty entanglement in graph states , 2003, quant-ph/0307130.
[48] F Verstraete,et al. Quantum nonlocality in the presence of superselection rules and data hiding protocols. , 2003, Physical review letters.
[49] A. Sudbery,et al. Non-local properties of multi-particle density matrices , 1998, quant-ph/9801076.
[50] M. B. Plenio,et al. Bounds on relative entropy of entanglement for multi-party systems , 2001 .
[51] R Raussendorf,et al. A one-way quantum computer. , 2001, Physical review letters.
[52] C. Monroe,et al. Experimental demonstration of entanglement-enhanced rotation angle estimation using trapped ions. , 2001, Physical review letters.
[53] A complete set of covariants of the four qubit system , 2003, quant-ph/0304026.
[54] Nicholas Pippenger,et al. The inequalities of quantum information theory , 2003, IEEE Trans. Inf. Theory.
[55] W. Wootters,et al. Distributed Entanglement , 1999, quant-ph/9907047.
[56] B. Moor,et al. Four qubits can be entangled in nine different ways , 2001, quant-ph/0109033.
[57] A. Acín,et al. Three-qubit pure-state canonical forms , 2000, quant-ph/0009107.
[58] Robert Alicki,et al. Symmetry properties of product states for the system of N n‐level atoms , 1988 .
[59] Martin Rötteler,et al. Computing local invariants of qubit systems , 1998 .
[60] Albert Einstein,et al. Can Quantum-Mechanical Description of Physical Reality Be Considered Complete? , 1935 .
[61] Eric M. Rains. Nonbinary quantum codes , 1999, IEEE Trans. Inf. Theory.
[62] J. Eisert,et al. Introduction to the basics of entanglement theory in continuous-variable systems , 2003, quant-ph/0312071.
[63] G. Vidal. On the characterization of entanglement , 1998 .
[64] J. Cirac,et al. Three qubits can be entangled in two inequivalent ways , 2000, quant-ph/0005115.
[65] A. Zeilinger,et al. Going Beyond Bell’s Theorem , 2007, 0712.0921.
[66] W. Wootters. Entanglement of Formation of an Arbitrary State of Two Qubits , 1997, quant-ph/9709029.
[67] W. Wootters,et al. Entanglement of a Pair of Quantum Bits , 1997, quant-ph/9703041.
[68] J. Cirac,et al. Separability and Distillability of Multiparticle Quantum Systems , 1999, quant-ph/9903018.