Multipartite entanglement

First, we show how the quantum circuits for generating and me asuring multi-party entanglement of qubits can be translated to continuous quan tum variables. We derive sufficient inseparability criteria for N -party continuous-variable states and discuss their applicability. Then, we consider a family of m ultipartite entangled states (multi-party multi-mode states with one mode per par ty) described by continuous quantum variables and analyze their properties . These states can be efficiently generated using squeezed light and linear optic s.

[1]  M. Nielsen Conditions for a Class of Entanglement Transformations , 1998, quant-ph/9811053.

[2]  H. Weinfurter,et al.  Experimental test of quantum nonlocality in three-photon Greenberger–Horne–Zeilinger entanglement , 2000, Nature.

[3]  V. Buzek,et al.  Quantum secret sharing , 1998, quant-ph/9806063.

[4]  S Popescu,et al.  Multi-particle entanglement , 1998 .

[5]  Christian Kurtsiefer,et al.  Experimental detection of multipartite entanglement using witness operators. , 2004, Physical review letters.

[6]  R. Werner,et al.  Estimating the spectrum of a density operator , 2001, quant-ph/0102027.

[7]  J I Cirac,et al.  Reversible combination of inequivalent kinds of multipartite entanglement. , 2000, Physical review letters.

[8]  Masahito Hayashi,et al.  Quantum universal variable-length source coding , 2002, quant-ph/0202001.

[9]  M. Fannes,et al.  Finitely correlated states on quantum spin chains , 1992 .

[10]  H. Weinfurter,et al.  Observation of three-photon Greenberger-Horne-Zeilinger entanglement , 1998, quant-ph/9810035.

[11]  A. Shimony,et al.  Proposed Experiment to Test Local Hidden Variable Theories. , 1969 .

[12]  C. Monroe,et al.  Experimental entanglement of four particles , 2000, Nature.

[13]  M. S. Leifer,et al.  Measuring polynomial invariants of multiparty quantum states , 2003, quant-ph/0308008.

[14]  E. Lieb,et al.  A Fundamental Property of Quantum-Mechanical Entropy , 1973 .

[15]  C. H. Bennett,et al.  Unextendible product bases and bound entanglement , 1998, quant-ph/9808030.

[16]  Eric M. Rains Quantum Codes of Minimum Distance Two , 1999, IEEE Trans. Inf. Theory.

[17]  P. Parrilo,et al.  Distinguishing separable and entangled states. , 2001, Physical review letters.

[18]  Wineland,et al.  Optimal frequency measurements with maximally correlated states. , 1996, Physical review. A, Atomic, molecular, and optical physics.

[19]  B. M. Fulk MATH , 1992 .

[20]  J. Cirac,et al.  Classification of multiqubit mixed states: Separability and distillability properties , 1999, quant-ph/9911044.

[21]  Leonid Gurvits Classical deterministic complexity of Edmonds' Problem and quantum entanglement , 2003, STOC '03.

[22]  A. Sudbery,et al.  Multipartite generalization of the Schmidt decomposition , 2000, quant-ph/0006125.

[23]  V. Buzek,et al.  Entangled graphs: Bipartite entanglement in multiqubit systems , 2002, quant-ph/0211020.

[24]  R. Cleve,et al.  HOW TO SHARE A QUANTUM SECRET , 1999, quant-ph/9901025.

[25]  A. Kitaev Fault tolerant quantum computation by anyons , 1997, quant-ph/9707021.

[26]  J. Eisert,et al.  Schmidt measure as a tool for quantifying multiparticle entanglement , 2000, quant-ph/0007081.

[27]  J. Ignacio Cirac,et al.  On the structure of a reversible entanglement generating set for tripartite states , 2003, Quantum Inf. Comput..

[28]  M. Lewenstein,et al.  Quantum Correlations in Systems of Indistinguishable Particles , 2002, quant-ph/0203060.

[29]  B. Moor,et al.  Normal forms and entanglement measures for multipartite quantum states , 2001, quant-ph/0105090.

[30]  P. Goldbart,et al.  Geometric measure of entanglement and applications to bipartite and multipartite quantum states , 2003, quant-ph/0307219.

[31]  M. B. Plenio,et al.  Tripartite entanglement and quantum relative entropy , 2000 .

[32]  Charles H. Bennett,et al.  Exact and asymptotic measures of multipartite pure-state entanglement , 1999, Physical Review A.

[33]  J. Cirac,et al.  Improvement of frequency standards with quantum entanglement , 1997, quant-ph/9707014.

[34]  Zhen Zhang,et al.  On Characterization of Entropy Function via Information Inequalities , 1998, IEEE Trans. Inf. Theory.

[35]  M. Lewenstein,et al.  Classification of mixed three-qubit states. , 2001, Physical review letters.

[36]  White,et al.  Density matrix formulation for quantum renormalization groups. , 1992, Physical review letters.

[37]  Charles H. Bennett,et al.  Mixed-state entanglement and quantum error correction. , 1996, Physical review. A, Atomic, molecular, and optical physics.

[38]  B. Moor,et al.  Local filtering operations on two qubits , 2000, quant-ph/0011111.

[39]  Wineland,et al.  Squeezed atomic states and projection noise in spectroscopy. , 1994, Physical review. A, Atomic, molecular, and optical physics.

[40]  A. Miyake Classification of multipartite entangled states by multidimensional determinants , 2002, quant-ph/0206111.

[41]  M. Lewenstein,et al.  Detection of entanglement with few local measurements , 2002, quant-ph/0205089.

[42]  Oliver Rudolph The uniqueness theorem for entanglement measures , 2001, quant-ph/0105104.

[43]  Kiel T. Williams,et al.  Extreme quantum entanglement in a superposition of macroscopically distinct states. , 1990, Physical review letters.

[44]  J. Bell On the Einstein-Podolsky-Rosen paradox , 1964 .

[45]  Dirk Schlingemann Logical network implementation for cluster states and graph codes , 2003, Quantum Inf. Comput..

[46]  Werner,et al.  Quantum states with Einstein-Podolsky-Rosen correlations admitting a hidden-variable model. , 1989, Physical review. A, General physics.

[47]  J. Eisert,et al.  Multiparty entanglement in graph states , 2003, quant-ph/0307130.

[48]  F Verstraete,et al.  Quantum nonlocality in the presence of superselection rules and data hiding protocols. , 2003, Physical review letters.

[49]  A. Sudbery,et al.  Non-local properties of multi-particle density matrices , 1998, quant-ph/9801076.

[50]  M. B. Plenio,et al.  Bounds on relative entropy of entanglement for multi-party systems , 2001 .

[51]  R Raussendorf,et al.  A one-way quantum computer. , 2001, Physical review letters.

[52]  C. Monroe,et al.  Experimental demonstration of entanglement-enhanced rotation angle estimation using trapped ions. , 2001, Physical review letters.

[53]  A complete set of covariants of the four qubit system , 2003, quant-ph/0304026.

[54]  Nicholas Pippenger,et al.  The inequalities of quantum information theory , 2003, IEEE Trans. Inf. Theory.

[55]  W. Wootters,et al.  Distributed Entanglement , 1999, quant-ph/9907047.

[56]  B. Moor,et al.  Four qubits can be entangled in nine different ways , 2001, quant-ph/0109033.

[57]  A. Acín,et al.  Three-qubit pure-state canonical forms , 2000, quant-ph/0009107.

[58]  Robert Alicki,et al.  Symmetry properties of product states for the system of N n‐level atoms , 1988 .

[59]  Martin Rötteler,et al.  Computing local invariants of qubit systems , 1998 .

[60]  Albert Einstein,et al.  Can Quantum-Mechanical Description of Physical Reality Be Considered Complete? , 1935 .

[61]  Eric M. Rains Nonbinary quantum codes , 1999, IEEE Trans. Inf. Theory.

[62]  J. Eisert,et al.  Introduction to the basics of entanglement theory in continuous-variable systems , 2003, quant-ph/0312071.

[63]  G. Vidal On the characterization of entanglement , 1998 .

[64]  J. Cirac,et al.  Three qubits can be entangled in two inequivalent ways , 2000, quant-ph/0005115.

[65]  A. Zeilinger,et al.  Going Beyond Bell’s Theorem , 2007, 0712.0921.

[66]  W. Wootters Entanglement of Formation of an Arbitrary State of Two Qubits , 1997, quant-ph/9709029.

[67]  W. Wootters,et al.  Entanglement of a Pair of Quantum Bits , 1997, quant-ph/9703041.

[68]  J. Cirac,et al.  Separability and Distillability of Multiparticle Quantum Systems , 1999, quant-ph/9903018.