Semidefinite Programs on Sparse Random Graphs

Denote by $A$ the adjacency matrix of an Erd\H{o}s-Renyi graph with bounded average degree. We consider the problem of maximizing $\langle A-{\mathbb E}\{A\},X\rangle$ over the set of positive semidefinite matrices $X$ with diagonal entries $X_{ii}=1$. We prove that for large (bounded) average degree $\gamma$, the value of this semidefinite program (SDP) is -with high probability- $2n\sqrt{\gamma} + n\, o(\sqrt{\gamma})+ o(n)$. Our proof is based on two tools from different research areas. First, we develop a new `higher-rank' Grothendieck inequality for symmetric matrices. In the present case, our inequality implies that the value of the above SDP is arbitrarily well approximated by optimizing over rank-$k$ matrices for $k$ large but bounded. Second, we use the interpolation method from spin glass theory to approximate this problem by a second one concerning Wigner random matrices instead of sparse graphs. As an application of our results, we prove new bounds on community detection via SDP that are substantially more accurate than the state of the art.

[1]  F. Guerra,et al.  The High Temperature Region of the Viana–Bray Diluted Spin Glass Model , 2003, cond-mat/0302401.

[2]  Uriel Feige,et al.  Spectral techniques applied to sparse random graphs , 2005, Random Struct. Algorithms.

[3]  Roman Vershynin,et al.  Community detection in sparse networks via Grothendieck’s inequality , 2014, Probability Theory and Related Fields.

[4]  Elchanan Mossel,et al.  Spectral redemption in clustering sparse networks , 2013, Proceedings of the National Academy of Sciences.

[5]  M. Talagrand,et al.  Bounds for diluted mean-fields spin glass models , 2004, math/0405357.

[6]  David Gamarnik,et al.  Combinatorial approach to the interpolation method and scaling limits in sparse random graphs , 2010, STOC '10.

[7]  R. Rietz A proof of the Grothendieck inequality , 1974 .

[8]  Frank Vallentin,et al.  Grothendieck Inequalities for Semidefinite Programs with Rank Constraint , 2010, Theory Comput..

[9]  Benny Sudakov,et al.  The Largest Eigenvalue of Sparse Random Graphs , 2001, Combinatorics, Probability and Computing.

[10]  Gábor Lugosi,et al.  Concentration Inequalities - A Nonasymptotic Theory of Independence , 2013, Concentration Inequalities.

[11]  Bruce E. Hajek,et al.  Achieving exact cluster recovery threshold via semidefinite programming , 2015, 2015 IEEE International Symposium on Information Theory (ISIT).

[12]  A. Megretski Relaxations of Quadratic Programs in Operator Theory and System Analysis , 2001 .

[13]  S. Franz,et al.  Replica bounds for diluted non-Poissonian spin systems , 2003, cond-mat/0307367.

[14]  Rome,et al.  The infinite volume limit in generalized mean field disordered models , 2002 .

[15]  Bruce E. Hajek,et al.  Achieving Exact Cluster Recovery Threshold via Semidefinite Programming: Extensions , 2015, IEEE Transactions on Information Theory.

[16]  C. Tracy,et al.  Introduction to Random Matrices , 1992, hep-th/9210073.

[17]  Cristopher Moore,et al.  Asymptotic analysis of the stochastic block model for modular networks and its algorithmic applications , 2011, Physical review. E, Statistical, nonlinear, and soft matter physics.

[18]  Amin Coja-Oghlan,et al.  Graph Partitioning via Adaptive Spectral Techniques , 2009, Combinatorics, Probability and Computing.

[19]  Frank McSherry,et al.  Spectral partitioning of random graphs , 2001, Proceedings 2001 IEEE International Conference on Cluster Computing.

[20]  J. Lindeberg Eine neue Herleitung des Exponentialgesetzes in der Wahrscheinlichkeitsrechnung , 1922 .

[21]  Noga Alon,et al.  Quadratic forms on graphs , 2005, STOC '05.

[22]  Van H. Vu,et al.  Spectral norm of random matrices , 2005, STOC '05.

[23]  D. Féral,et al.  The Largest Eigenvalue of Rank One Deformation of Large Wigner Matrices , 2006, math/0605624.

[24]  Andrea Montanari,et al.  Extremal Cuts of Sparse Random Graphs , 2015, ArXiv.

[25]  Frank Vallentin,et al.  The Positive Semidefinite Grothendieck Problem with Rank Constraint , 2009, ICALP.

[26]  Laurent Massoulié,et al.  Community detection thresholds and the weak Ramanujan property , 2013, STOC.

[27]  Tamás Terlaky,et al.  On maximization of quadratic form over intersection of ellipsoids with common center , 1999, Math. Program..

[28]  Amin Coja-Oghlan,et al.  A spectral heuristic for bisecting random graphs , 2005, SODA '05.

[29]  Emmanuel Abbe,et al.  Exact Recovery in the Stochastic Block Model , 2014, IEEE Transactions on Information Theory.

[30]  Michael I. Jordan,et al.  On Spectral Clustering: Analysis and an algorithm , 2001, NIPS.

[31]  A. Grothendieck Résumé de la théorie métrique des produits tensoriels topologiques , 1996 .

[32]  Subhash Khot,et al.  Grothendieck‐Type Inequalities in Combinatorial Optimization , 2011, ArXiv.

[33]  Noga Alon,et al.  Finding a large hidden clique in a random graph , 1998, SODA '98.

[34]  Andrea Montanari,et al.  Matrix Completion from Noisy Entries , 2009, J. Mach. Learn. Res..

[35]  Michele Leone,et al.  Replica Bounds for Optimization Problems and Diluted Spin Systems , 2002 .