暂无分享,去创建一个
[1] F. Guerra,et al. The High Temperature Region of the Viana–Bray Diluted Spin Glass Model , 2003, cond-mat/0302401.
[2] Uriel Feige,et al. Spectral techniques applied to sparse random graphs , 2005, Random Struct. Algorithms.
[3] Roman Vershynin,et al. Community detection in sparse networks via Grothendieck’s inequality , 2014, Probability Theory and Related Fields.
[4] Elchanan Mossel,et al. Spectral redemption in clustering sparse networks , 2013, Proceedings of the National Academy of Sciences.
[5] M. Talagrand,et al. Bounds for diluted mean-fields spin glass models , 2004, math/0405357.
[6] David Gamarnik,et al. Combinatorial approach to the interpolation method and scaling limits in sparse random graphs , 2010, STOC '10.
[7] R. Rietz. A proof of the Grothendieck inequality , 1974 .
[8] Frank Vallentin,et al. Grothendieck Inequalities for Semidefinite Programs with Rank Constraint , 2010, Theory Comput..
[9] Benny Sudakov,et al. The Largest Eigenvalue of Sparse Random Graphs , 2001, Combinatorics, Probability and Computing.
[10] Gábor Lugosi,et al. Concentration Inequalities - A Nonasymptotic Theory of Independence , 2013, Concentration Inequalities.
[11] Bruce E. Hajek,et al. Achieving exact cluster recovery threshold via semidefinite programming , 2015, 2015 IEEE International Symposium on Information Theory (ISIT).
[12] A. Megretski. Relaxations of Quadratic Programs in Operator Theory and System Analysis , 2001 .
[13] S. Franz,et al. Replica bounds for diluted non-Poissonian spin systems , 2003, cond-mat/0307367.
[14] Rome,et al. The infinite volume limit in generalized mean field disordered models , 2002 .
[15] Bruce E. Hajek,et al. Achieving Exact Cluster Recovery Threshold via Semidefinite Programming: Extensions , 2015, IEEE Transactions on Information Theory.
[16] C. Tracy,et al. Introduction to Random Matrices , 1992, hep-th/9210073.
[17] Cristopher Moore,et al. Asymptotic analysis of the stochastic block model for modular networks and its algorithmic applications , 2011, Physical review. E, Statistical, nonlinear, and soft matter physics.
[18] Amin Coja-Oghlan,et al. Graph Partitioning via Adaptive Spectral Techniques , 2009, Combinatorics, Probability and Computing.
[19] Frank McSherry,et al. Spectral partitioning of random graphs , 2001, Proceedings 2001 IEEE International Conference on Cluster Computing.
[20] J. Lindeberg. Eine neue Herleitung des Exponentialgesetzes in der Wahrscheinlichkeitsrechnung , 1922 .
[21] Noga Alon,et al. Quadratic forms on graphs , 2005, STOC '05.
[22] Van H. Vu,et al. Spectral norm of random matrices , 2005, STOC '05.
[23] D. Féral,et al. The Largest Eigenvalue of Rank One Deformation of Large Wigner Matrices , 2006, math/0605624.
[24] Andrea Montanari,et al. Extremal Cuts of Sparse Random Graphs , 2015, ArXiv.
[25] Frank Vallentin,et al. The Positive Semidefinite Grothendieck Problem with Rank Constraint , 2009, ICALP.
[26] Laurent Massoulié,et al. Community detection thresholds and the weak Ramanujan property , 2013, STOC.
[27] Tamás Terlaky,et al. On maximization of quadratic form over intersection of ellipsoids with common center , 1999, Math. Program..
[28] Amin Coja-Oghlan,et al. A spectral heuristic for bisecting random graphs , 2005, SODA '05.
[29] Emmanuel Abbe,et al. Exact Recovery in the Stochastic Block Model , 2014, IEEE Transactions on Information Theory.
[30] Michael I. Jordan,et al. On Spectral Clustering: Analysis and an algorithm , 2001, NIPS.
[31] A. Grothendieck. Résumé de la théorie métrique des produits tensoriels topologiques , 1996 .
[32] Subhash Khot,et al. Grothendieck‐Type Inequalities in Combinatorial Optimization , 2011, ArXiv.
[33] Noga Alon,et al. Finding a large hidden clique in a random graph , 1998, SODA '98.
[34] Andrea Montanari,et al. Matrix Completion from Noisy Entries , 2009, J. Mach. Learn. Res..
[35] Michele Leone,et al. Replica Bounds for Optimization Problems and Diluted Spin Systems , 2002 .