Review of Nonlinear Filtering for SHM with an Exploration of Novel Higher-Order Kalman Filtering Algorithms for Uncertainty Quantification

AbstractRecent work has shown the applicability of Bayesian inference techniques, which use a physics-based representation of the structure of interest, to structural health monitoring (SHM) tasks,...

[1]  Joel P. Conte,et al.  Material Parameter Identification in Distributed Plasticity FE Models of Frame-Type Structures Using Nonlinear Stochastic Filtering , 2015 .

[2]  S. Law,et al.  Structural damage localization from modal strain energy change , 1998 .

[3]  Nando de Freitas,et al.  Rao-Blackwellised Particle Filtering for Dynamic Bayesian Networks , 2000, UAI.

[4]  Peter Jan,et al.  Particle Filtering in Geophysical Systems , 2009 .

[5]  J. Beck,et al.  Model Selection using Response Measurements: Bayesian Probabilistic Approach , 2004 .

[6]  Andrew W. Smyth,et al.  Online Bayesian model assessment using nonlinear filters , 2017 .

[7]  F Gustafsson,et al.  Particle filter theory and practice with positioning applications , 2010, IEEE Aerospace and Electronic Systems Magazine.

[8]  C. S. Manohar,et al.  A particle filtering approach for structural system identification in vehicle–structure interaction problems , 2010 .

[9]  P. L. Green,et al.  Bayesian and Markov chain Monte Carlo methods for identifying nonlinear systems in the presence of uncertainty , 2015, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[10]  Jeffrey K. Uhlmann,et al.  Reduced sigma point filters for the propagation of means and covariances through nonlinear transformations , 2002, Proceedings of the 2002 American Control Conference (IEEE Cat. No.CH37301).

[11]  Simon J. Julier,et al.  Skewed approach to filtering , 1998, Defense, Security, and Sensing.

[12]  A. Doucet,et al.  Gradient-free maximum likelihood parameter estimation with particle filters , 2006, 2006 American Control Conference.

[13]  K. Mardia Measures of multivariate skewness and kurtosis with applications , 1970 .

[14]  Keith Worden,et al.  An introduction to structural health monitoring , 2007, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[15]  Fredrik Gustafsson,et al.  A Student's t filter for heavy tailed process and measurement noise , 2013, 2013 IEEE International Conference on Acoustics, Speech and Signal Processing.

[16]  J. Beck,et al.  Bayesian Updating of Structural Models and Reliability using Markov Chain Monte Carlo Simulation , 2002 .

[17]  Arnaud Doucet,et al.  Particle filters for state estimation of jump Markov linear systems , 2001, IEEE Trans. Signal Process..

[18]  R. Handel,et al.  Can local particle filters beat the curse of dimensionality , 2013, 1301.6585.

[19]  Eleni Chatzi,et al.  The unscented Kalman filter and particle filter methods for nonlinear structural system identification with non‐collocated heterogeneous sensing , 2009 .

[20]  James L. Beck,et al.  Bayesian Updating and Model Class Selection for Hysteretic Structural Models Using Stochastic Simulation , 2008 .

[21]  Javad Rezaie,et al.  Kalman filter variants in the closed skew normal setting , 2014, Comput. Stat. Data Anal..

[22]  Rudolph van der Merwe,et al.  Sigma-point kalman filters for probabilistic inference in dynamic state-space models , 2004 .

[23]  Nando de Freitas,et al.  The Unscented Particle Filter , 2000, NIPS.

[24]  Rune Brincker,et al.  Vibration Based Inspection of Civil Engineering Structures , 1993 .

[25]  Rudolph van der Merwe,et al.  The unscented Kalman filter for nonlinear estimation , 2000, Proceedings of the IEEE 2000 Adaptive Systems for Signal Processing, Communications, and Control Symposium (Cat. No.00EX373).

[26]  T. Bengtsson,et al.  Performance Bounds for Particle Filters Using the Optimal Proposal , 2015 .

[27]  Wilson H. Tang,et al.  Probability Concepts in Engineering: Emphasis on Applications to Civil and Environmental Engineering , 2006 .

[28]  Raimondo Betti,et al.  A structural health monitoring strategy using cepstral features , 2014 .

[29]  Eleni Chatzi,et al.  An experimental validation of time domain system identification methods with fusion of heterogeneous data , 2015 .

[30]  Nando de Freitas,et al.  Sequential Monte Carlo Methods in Practice , 2001, Statistics for Engineering and Information Science.

[31]  Thomas B. Schön,et al.  Marginalized particle filters for mixed linear/nonlinear state-space models , 2005, IEEE Transactions on Signal Processing.

[32]  Guanrong Chen,et al.  Kalman Filtering with Real-time Applications , 1987 .

[33]  Fredrik Gustafsson,et al.  Marginalized adaptive particle filtering for nonlinear models with unknown time-varying noise parameters , 2013, Autom..

[34]  Fredrik Gustafsson,et al.  Some Relations Between Extended and Unscented Kalman Filters , 2012, IEEE Transactions on Signal Processing.

[35]  Andrew W. Smyth,et al.  Online Noise Identification for Joint State and Parameter Estimation of Nonlinear Systems , 2016 .

[36]  Yujin Wang,et al.  A linear extension of Unscented Kalman Filter to higher-order moment-matching , 2014, 53rd IEEE Conference on Decision and Control.

[37]  Yong Rui,et al.  Better proposal distributions: object tracking using unscented particle filter , 2001, Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2001.

[38]  Fredrik Gustafsson,et al.  The ensemble Kalman filter and its relations to other nonlinear filters , 2015, 2015 23rd European Signal Processing Conference (EUSIPCO).

[39]  Muni S. Srivastava,et al.  A measure of skewness and kurtosis and a graphical method for assessing multivariate normality , 1984 .

[40]  D. Bernstein,et al.  What is the ensemble Kalman filter and how well does it work? , 2006, 2006 American Control Conference.

[41]  Mark R. Morelande,et al.  An Unscented Transformation for Conditionally Linear Models , 2007, 2007 IEEE International Conference on Acoustics, Speech and Signal Processing - ICASSP '07.

[42]  K. Law,et al.  Time series-based damage detection and localization algorithm with application to the ASCE benchmark structure , 2006 .

[43]  Jeffrey K. Uhlmann,et al.  A consistent, debiased method for converting between polar and Cartesian coordinate systems , 1997 .

[44]  Simon J. Godsill,et al.  An Overview of Existing Methods and Recent Advances in Sequential Monte Carlo , 2007, Proceedings of the IEEE.

[45]  Arnaud Doucet,et al.  A survey of convergence results on particle filtering methods for practitioners , 2002, IEEE Trans. Signal Process..

[46]  P. Bickel,et al.  Curse-of-dimensionality revisited: Collapse of the particle filter in very large scale systems , 2008, 0805.3034.

[47]  Eleni Chatzi,et al.  Particle filter scheme with mutation for the estimation of time‐invariant parameters in structural health monitoring applications , 2013 .

[48]  M. Genton,et al.  A skewed Kalman filter , 2005 .

[49]  Simon J. Julier,et al.  The scaled unscented transformation , 2002, Proceedings of the 2002 American Control Conference (IEEE Cat. No.CH37301).

[50]  Simon J. Julier,et al.  The spherical simplex unscented transformation , 2003, Proceedings of the 2003 American Control Conference, 2003..

[51]  Andrew W. Smyth,et al.  Particle filtering and marginalization for parameter identification in structural systems , 2017 .