Solvable Model of a Generic Driven Mixture of Trapped Bose–Einstein Condensates and Properties of a Many-Boson Floquet State at the Limit of an Infinite Number of Particles

A solvable model of a periodically driven trapped mixture of Bose-Einstein condensates, consisting of N1 interacting bosons of mass m1 driven by a force of amplitude fL,1 and N2 interacting bosons of mass m2 driven by a force of amplitude fL,2, is presented. The model generalizes the harmonic-interaction model for mixtures to the time-dependent domain. The resulting many-particle ground Floquet wavefunction and quasienergy, as well as the time-dependent densities and reduced density matrices, are prescribed explicitly and analyzed at the many-body and mean-field levels of theory for finite systems and at the limit of an infinite number of particles. We prove that the time-dependent densities per particle are given at the limit of an infinite number of particles by their respective mean-field quantities, and that the time-dependent reduced one-particle and two-particle density matrices per particle of the driven mixture are 100% condensed. Interestingly, the quasienergy per particle does not coincide with the mean-field value at this limit, unless the relative center-of-mass coordinate of the two Bose-Einstein condensates is not activated by the driving forces fL,1 and fL,2. As an application, we investigate the imprinting of angular momentum and its fluctuations when steering a Bose-Einstein condensate by an interacting bosonic impurity and the resulting modes of rotations. Whereas the expectation values per particle of the angular-momentum operator for the many-body and mean-field solutions coincide at the limit of an infinite number of particles, the respective fluctuations can differ substantially. The results are analyzed in terms of the transformation properties of the angular-momentum operator under translations and boosts, and as a function of the interactions between the particles. Implications are briefly discussed.

[1]  M. Lewenstein,et al.  Conservation of Torus-knot Angular Momentum in High-order Harmonic Generation. , 2018, Physical review letters.

[2]  R. Hall Some exact solutions to the translation-invariant N-body problem , 1978 .

[3]  V. V. Murakhtanov,et al.  The system of harmonically interacting particles: An exact solution of the quantum‐mechanical problem , 1991 .

[4]  C. Schilling Natural orbitals and occupation numbers for harmonium: Fermions versus bosons , 2013, 1307.6858.

[5]  Metiu,et al.  Properties of an electron in a quantum double well driven by a strong laser: Localization, low-frequency, and even-harmonic generation. , 1993, Physical review. A, Atomic, molecular, and optical physics.

[6]  Gil Refael,et al.  Floquet topological insulator in semiconductor quantum wells , 2010, 1008.1792.

[7]  Fluctuations of the order parameter of a mesoscopic Floquet condensate , 2014, 1410.8008.

[8]  R. Hall Exact solutions of Schrodinger's equation for translation-invariant harmonic matter , 1978 .

[9]  K. Fujimoto,et al.  Floquet spinor Bose gases , 2019, Physical Review Research.

[10]  A. Michelangeli,et al.  Mean-field quantum dynamics for a mixture of Bose–Einstein condensates , 2016, 1603.02435.

[11]  Peskin,et al.  Time-independent scattering theory for time-periodic Hamiltonians: Formulation and complex-scaling calculations of above-threshold-ionization spectra. , 1994, Physical review. A, Atomic, molecular, and optical physics.

[12]  A. Jensen,et al.  Analytic solutions of topologically disjoint systems , 2014, 1411.3347.

[13]  V. Bagnato,et al.  Characterization of nonequilibrium states of trapped Bose–Einstein condensates , 2017, 1705.01768.

[14]  Horng-Tzer Yau,et al.  Rigorous derivation of the Gross-Pitaevskii equation. , 2006, Physical review letters.

[15]  Bifurcation of nonlinear Floquet states in a periodically driven Bose–Einstein condensate , 2013 .

[16]  P. Werner,et al.  High-Harmonic Generation in Mott Insulators. , 2017, Physical review letters.

[17]  L. Cederbaum,et al.  Multiconfigurational time-dependent Hartree method for mixtures consisting of two types of identical particles , 2007 .

[18]  Peter Schmelcher,et al.  Controlled excitation and resonant acceleration of ultracold few-boson systems by driven interactions in a harmonic trap , 2011, 1112.4678.

[19]  W. Ketterle,et al.  OPTICAL CONFINEMENT OF A BOSE-EINSTEIN CONDENSATE , 1998 .

[20]  C. Pethick,et al.  Bose–Einstein Condensation in Dilute Gases: Appendix. Fundamental constants and conversion factors , 2008 .

[21]  T. Busch,et al.  Quantum gas mixtures in different correlation regimes , 2012, 1208.1980.

[22]  Y. Castin,et al.  Low-temperature Bose-Einstein condensates in time-dependent traps: Beyond the U(1) symmetry-breaking approach , 1998 .

[23]  D. Petrov,et al.  Quantum Mechanical Stabilization of a Collapsing Bose-Bose Mixture. , 2015, Physical review letters.

[24]  S. Klaiman,et al.  Variance as a sensitive probe of correlations , 2015, 1502.07528.

[25]  C. Schilling,et al.  Number-parity effect for confined fermions in one dimension , 2015, 1508.04452.

[26]  Entanglement Induced Interactions in Binary Mixtures. , 2017, Physical review letters.

[27]  N. Moiseyev,et al.  Selection Rules for the High Harmonic Generation Spectra , 1998 .

[28]  N-conserving Bogoliubov vacuum of a two-component Bose Einstein condensate: density fluctuations close to a phase-separation condition , 2007, cond-mat/0701212.

[29]  L. D'alessio,et al.  Universal high-frequency behavior of periodically driven systems: from dynamical stabilization to Floquet engineering , 2014, 1407.4803.

[30]  V. S. Bagnato,et al.  Formation of granular structures in trapped Bose–Einstein condensates under oscillatory excitations , 2014, 1407.5603.

[31]  S. Choudhury,et al.  Transverse collisional instabilities of a Bose-Einstein condensate in a driven one-dimensional lattice , 2014, 1410.4576.

[32]  J. S. Howland,et al.  Stationary scattering theory for time-dependent Hamiltonians , 1974 .

[33]  O. Alon Dynamical symmetries of time-periodic Hamiltonians , 2002 .

[34]  Elliott H. Lieb,et al.  Bosons in a trap: A rigorous derivation of the Gross-Pitaevskii energy functional , 1999, math-ph/9908027.

[35]  M. Strayer,et al.  The Nuclear Many-Body Problem , 2004 .

[36]  L. Cederbaum,et al.  Variance of an anisotropic Bose-Einstein condensate , 2017, Chemical Physics.

[37]  N. Goldman,et al.  Periodically Driven Quantum Systems: Effective Hamiltonians and Engineered Gauge Fields , 2014, 1404.4373.

[38]  Shu Chen,et al.  Density-functional theory of two-component Bose gases in one-dimensional harmonic traps , 2009, 0905.3207.

[39]  Horng-Tzer Yau,et al.  Derivation of the cubic non-linear Schrödinger equation from quantum dynamics of many-body systems , 2005, math-ph/0508010.

[40]  P ? ? ? ? ? ? ? % ? ? ? ? , 1991 .

[41]  A. Jensen,et al.  Analytic harmonic approach to the N-body problem , 2010, 1011.2453.

[42]  L. Cohen,et al.  Exact reduced density matrices for a model problem , 1985 .

[43]  Mikhail D. Lukin,et al.  Phase diagram of two-component bosons on an optical lattice , 2003 .

[44]  Solvable Model of a Generic Trapped Mixture of Interacting Bosons: Many-Body and Mean-Field Properties at the Infinite-Particle Limit , 2017, 1708.00687.

[45]  S. Klaiman,et al.  Solvable model of a trapped mixture of Bose–Einstein condensates , 2016, 1605.05608.

[46]  M. Girardeau Pairing, off-diagonal long-range order, and quantum phase transition in strongly attracting ultracold bose gas mixtures in tight waveguides. , 2009, Physical review letters.

[47]  Analysis of dynamical tunneling experiments with a Bose-Einstein condensate (15 pages) , 2004, nlin/0404060.

[48]  S. Giorgini,et al.  Impurity in a Bose-Einstein condensate: Study of the attractive and repulsive branch using quantum Monte Carlo methods , 2015, 1507.07427.

[49]  M. Dykman,et al.  Preparing quasienergy states on demand: a parametric oscillator , 2017, 1703.04240.

[50]  D. Angom,et al.  Ground state geometry of binary condensates in axisymmetric traps , 2009, 0911.3561.

[51]  D. Hundertmark,et al.  Derivation of the Hartree equation for compound Bose gases in the mean field limit , 2017, 1702.00827.

[52]  Martin Holthaus,et al.  Towards coherent control of a Bose-Einstein condensate in a double well , 2001 .

[53]  L. Cederbaum,et al.  Overlap of exact and Gross-Pitaevskii wave functions in Bose-Einstein condensates of dilute gases , 2016, 1609.05895.

[54]  D. Tannor,et al.  Introduction to Quantum Mechanics: A Time-Dependent Perspective , 2006 .

[55]  M. Holthaus,et al.  Adiabatic preparation of Floquet condensates , 2016, 1605.08199.

[56]  B V Svistunov,et al.  Counterflow superfluidity of two-species ultracold atoms in a commensurate optical lattice. , 2003, Physical review letters.

[57]  Condensate depletion in two-species Bose gases: A variational Quantum Monte Carlo study , 2007, cond-mat/0703248.

[58]  Carl E. Wieman,et al.  PRODUCTION OF TWO OVERLAPPING BOSE-EINSTEIN CONDENSATES BY SYMPATHETIC COOLING , 1997 .

[59]  Coupled oscillator natural orbitals , 1977 .

[60]  Wagner Strongly driven quantum wells: An analytical solution to the time-dependent Schrödinger equation. , 1996, Physical review letters.

[61]  A. Eckardt,et al.  Colloquium: Atomic quantum gases in periodically driven optical lattices , 2016, 1606.08041.

[62]  Ofir E. Alon,et al.  Analysis of a Trapped Bose-Einstein Condensate in Terms of Position, Momentum, and Angular-Momentum Variance , 2019, Symmetry.

[63]  K. Yeon,et al.  The quantum under-, critical- and over-damped driven harmonic oscillators , 2001 .

[64]  N. Moiseyev,et al.  High Harmonic Generation Spectra of Neutral Helium by the Complex-Scaled ( t,t') Method: Role of Dynamical Electron Correlation , 1997 .

[65]  H. Sambe Steady States and Quasienergies of a Quantum-Mechanical System in an Oscillating Field , 1973 .

[66]  T. Sowiński,et al.  One-dimensional mixtures of several ultracold atoms: a review , 2019, Reports on progress in physics. Physical Society.

[67]  A. Eckardt,et al.  Ground-state energy and depletions for a dilute binary Bose gas , 2004, cond-mat/0408533.

[68]  Robert Seiringer,et al.  Proof of Bose-Einstein condensation for dilute trapped gases. , 2002, Physical review letters.

[69]  A. Jensen,et al.  Virial expansion coefficients in the harmonic approximation. , 2012, Physical review. E, Statistical, nonlinear, and soft matter physics.

[70]  Gavrila,et al.  Stabilization of atomic hydrogen in superintense, high-frequency laser fields of circular polarization. , 1990, Physical review letters.

[71]  O. Cohen,et al.  Floquet group theory and its application to selection rules in harmonic generation , 2019, Nature Communications.

[72]  J. S. Dehesa,et al.  Entanglement in N-harmonium: bosons and fermions , 2014, 1404.4447.

[73]  L. Madsen,et al.  Multispecies time-dependent restricted-active-space self-consistent-field theory for ultracold atomic and molecular gases , 2018, Journal of Physics B: Atomic, Molecular and Optical Physics.

[74]  R. Plestid,et al.  DRIVEN QUANTUM SYSTEMS , 2019 .

[75]  J. S. Dehesa,et al.  Entanglement and the Born-Oppenheimer approximation in an exactly solvable quantum many-body system , 2014, 1408.6990.

[76]  B. Judd,et al.  Reduced Density Matrices: Coulson's Challenge , 2000 .

[77]  W. Hai,et al.  Exact Floquet states of a two-component Bose-Einstein condensate induced by a laser standing wave , 2006 .

[78]  Ho,et al.  Binary Mixtures of Bose Condensates of Alkali Atoms. , 1996, Physical review letters.

[79]  Dynamics of a strongly driven two-component Bose-Einstein condensate , 2001, cond-mat/0111573.

[80]  P. Schmelcher,et al.  Unraveling the Structure of Ultracold Mesoscopic Collinear Molecular Ions. , 2017, Physical review letters.

[81]  O. Alon Solvable model of a generic trapped mixture of interacting bosons: reduced density matrices and proof of Bose–Einstein condensation , 2017, 1702.08219.

[82]  Zhigang Wu,et al.  Persistent currents in a bosonic mixture in the ring geometry , 2012, 1207.3449.

[83]  P. Schmelcher,et al.  The multi-layer multi-configuration time-dependent Hartree method for bosons: theory, implementation, and applications. , 2012, The Journal of chemical physics.

[84]  L. Cederbaum Exact many-body wave function and properties of trapped bosons in the infinite-particle limit , 2017 .

[85]  Symmetries and selection rules in Floquet systems: application to harmonic generation in nonlinear optics , 2017, 1706.01087.

[86]  J. Kamiński,et al.  Floquet-Bloch theory of high-harmonic generation in periodic structures , 1997 .

[87]  Jean-Paul Blaizot,et al.  Quantum Theory of Finite Systems , 1985 .

[88]  Chaohong Lee,et al.  Exact Floquet states of a driven condensate and their stabilities , 2007, 0705.0058.

[89]  O. Cohen,et al.  A dynamical symmetry triad in high-harmonic generation revealed by attosecond recollision control , 2020, New Journal of Physics.

[90]  G. Floquet,et al.  Sur les équations différentielles linéaires à coefficients périodiques , 1883 .

[91]  N. Ishii,et al.  Observation of selection rules for circularly polarized fields in high-harmonic generation from a crystalline solid , 2017 .

[92]  V. S. Bagnato,et al.  Parametric Excitation of a Bose-Einstein Condensate: From Faraday Waves to Granulation , 2017, Physical Review X.

[93]  K. Kärkkäinen,et al.  Mixtures of Bose gases confined in a ring potential. , 2009, Physical review letters.

[94]  Nicholas P. Bigelow,et al.  Properties of Two-Species Bose Condensates , 1998 .

[95]  Bela Bauer,et al.  Floquet Time Crystals. , 2016, Physical review letters.

[96]  Semiclassical analysis of long-wavelength multiphoton processes: The periodically driven harmonic oscillator , 2002 .

[97]  O. Alon Variance of a Trapped Bose-Einstein Condensate , 2018, Journal of Physics: Conference Series.

[98]  A. Trombettoni,et al.  Dynamics of one-dimensional quantum many-body systems in time-periodic linear potentials , 2020, 2006.11299.

[99]  The multi-layer multi-configuration time-dependent Hartree method for bosons: theory, implementation, and applications. , 2013, The Journal of chemical physics.

[100]  V. Bagnato,et al.  Strongly Nonequilibrium Bose-Condensed Atomic Systems , 2015, 1506.01225.

[101]  M. Gajda Criterion for Bose-Einstein condensation in a harmonic trap in the case with attractive interactions , 2006 .

[102]  A. Orłowski,et al.  Soluble model of many interacting quantum particles in a trap , 2000 .

[103]  S. Klaiman,et al.  Uncertainty product of an out-of-equilibrium many-particle system , 2015, 1509.00762.

[104]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[105]  S. Choudhury,et al.  Stability of a Floquet Bose-Einstein condensate in a one-dimensional optical lattice , 2014, 1405.1398.

[106]  Jun Yan Harmonic Interaction Model and Its Applications in Bose–Einstein Condensation , 2003 .

[107]  Pedro Ponte,et al.  Many-body localization in periodically driven systems. , 2014, Physical review letters.

[108]  N. Ben-Tal,et al.  The effect of Hamiltonian symmetry on generation of odd and even harmonics , 1993 .

[109]  Jon H. Shirley,et al.  Solution of the Schrödinger Equation with a Hamiltonian Periodic in Time , 1965 .

[110]  M. Girardeau,et al.  Ground state of a mixture of two bosonic Calogero-Sutherland gases with strong odd-wave interspecies attraction , 2009, 0912.4893.

[111]  Eddy Timmermans Phase Separation of Bose-Einstein Condensates , 1998 .

[112]  Chris H. Greene,et al.  Hartree-Fock Theory for Double Condensates , 1997 .

[113]  Gavrila,et al.  First iteration within the high-frequency Floquet theory of laser-atom interactions. , 1996, Physical review. A, Atomic, molecular, and optical physics.