Time-adaptive quantile-copula for wind power probabilistic forecasting
暂无分享,去创建一个
Vladimiro Miranda | Zhi Zhou | Audun Botterud | Ricardo J. Bessa | Jianhui Wang | Vladimiro Miranda | Jianhui Wang | R. Bessa | A. Botterud | Zhi Zhou
[1] T. Gneiting. Quantiles as optimal point forecasts , 2011 .
[2] Song-xi Chen,et al. Beta kernel estimators for density functions , 1999 .
[3] G.N. Kariniotakis,et al. Probabilistic Short-term Wind Power Forecasting for the Optimal Management of Wind Generation , 2007, 2007 IEEE Lausanne Power Tech.
[4] H. Madsen,et al. From probabilistic forecasts to statistical scenarios of short-term wind power production , 2009 .
[5] Georges Kariniotakis,et al. Uncertainty estimation of wind power forecasts: Comparison of Probabilistic Modelling Approaches , 2008 .
[6] Weifeng Liu,et al. Kernel Adaptive Filtering: A Comprehensive Introduction , 2010 .
[7] John Bjørnar Bremnes,et al. Probabilistic wind power forecasts using local quantile regression , 2004 .
[8] E. Parzen. On Estimation of a Probability Density Function and Mode , 1962 .
[9] Iain MacGill,et al. Characterizing future large, rapid changes in aggregated wind power using Numerical Weather Prediction spatial fields , 2009 .
[10] M. Brower,et al. Development of Eastern Regional Wind Resource and Wind Plant Output Datasets: March 3, 2008 -- March 31, 2010 , 2009 .
[11] Henrik Madsen,et al. Skill forecasting from ensemble predictions of wind power , 2009 .
[12] Henrik Madsen,et al. Using quantile regression to extend an existing wind power forecasting system with probabilistic forecasts , 2006 .
[13] M. Sklar. Fonctions de repartition a n dimensions et leurs marges , 1959 .
[14] Olivier P. Faugeras,et al. A quantile-copula approach to conditional density estimation , 2007, J. Multivar. Anal..
[15] P Pinson,et al. Conditional Prediction Intervals of Wind Power Generation , 2010, IEEE Transactions on Power Systems.
[16] Taoufik Bouezmarni,et al. Semiparametric Multivariate Density Estimation for Positive Data Using Copulas , 2007, Comput. Stat. Data Anal..
[17] Pierre Pinson,et al. Non‐parametric probabilistic forecasts of wind power: required properties and evaluation , 2007 .
[18] R. J. Bessa,et al. Quantile-copula density forecast for wind power uncertainty modeling , 2011, 2011 IEEE Trondheim PowerTech.
[19] Vladimiro Miranda,et al. ‘Good’ or ‘bad’ wind power forecasts: a relative concept , 2011 .
[20] Vladimiro Miranda,et al. Risk management and optimal bidding for a wind power producer , 2010, IEEE PES General Meeting.
[21] M. Rosenblatt. Remarks on Some Nonparametric Estimates of a Density Function , 1956 .
[22] Jan Kloppenborg Møller,et al. ARTICLE IN PRESS Computational Statistics & Data Analysis ( ) – Time-adaptive quantile regression , 2022 .
[23] C. Gouriéroux,et al. Non) consistency of the Beta Kernel Estimator for Recovery Rate Distribution , 2006 .
[24] Georges Kariniotakis,et al. Advanced strategies for wind power trading in short-term electricity markets , 2008 .
[25] Henrik Madsen,et al. Ensemble-based Probabilistic Forecasting at Horns Rev , 2009 .
[26] Manuel A. Matos,et al. Comparison of probabilistic and deterministic approaches for setting operating reserve in systems with high penetration of wind power , 2010 .
[27] Markus Junker,et al. Elliptical copulas: applicability and limitations , 2003 .
[28] M A Matos,et al. Setting the Operating Reserve Using Probabilistic Wind Power Forecasts , 2011, IEEE Transactions on Power Systems.
[29] M. Wand,et al. Multivariate plug-in bandwidth selection , 1994 .
[30] T. Duong,et al. Multivariate plug-in bandwidth selection with unconstrained pilot bandwidth matrices , 2010 .
[31] Jordan G. Powers,et al. A Description of the Advanced Research WRF Version 2 , 2005 .
[32] G. Powers,et al. A Description of the Advanced Research WRF Version 3 , 2008 .
[33] Edward J. Wegman,et al. Remarks on Some Recursive Estimators of a Probability Density , 1979 .
[34] David J. Marchette,et al. On Some Techniques for Streaming Data: A Case Study of Internet Packet Headers , 2003 .
[35] Vladimiro Miranda,et al. Wind power forecasting : state-of-the-art 2009. , 2009 .