Minimum Separating Circle for Bichromatic Points in the Plane
暂无分享,去创建一个
[1] N. Megiddo,et al. Computing circular separability , 1986 .
[2] Jirí Matousek,et al. On Enclosing k Points by a Circle , 1995, Inf. Process. Lett..
[3] N. Megiddo. Linear-time algorithms for linear programming in R3 and related problems , 1982, FOCS 1982.
[4] Boris Aronov,et al. Efficient algorithms for bichromatic separability , 2004, SODA '04.
[5] Timothy M. Chan. On Enumerating and Selecting Distances , 2001, Int. J. Comput. Geom. Appl..
[6] Sariel Har-Peled,et al. Fast Algorithms for Computing the Smallest k-Enclosing Circle , 2004, Algorithmica.
[7] Steve Fisk. Separating Point Sets by Circles, and the Recognition of Digital Disks , 1986, IEEE Transactions on Pattern Analysis and Machine Intelligence.
[8] J. Urrutia,et al. Measuring the error of linear separators on linearly inseparable data , 2009 .
[9] Godfried T. Toussaint,et al. Computing largest empty circles with location constraints , 1983, International Journal of Computer & Information Sciences.
[10] Mariette Yvinec,et al. Computing Largest Circles Separating Two Sets of Segments , 2000, Int. J. Comput. Geom. Appl..
[11] Prosenjit Bose,et al. Smallest enclosing circle centered on a query line segment , 2008, CCCG.
[12] Rolf Klein,et al. Smallest Color-Spanning Objects , 2001, ESA.
[13] Sandip Das,et al. Constrained minimum enclosing circle with center on a query line segment , 2009, Comput. Geom..
[14] Nimrod Megiddo,et al. Linear-Time Algorithms for Linear Programming in R^3 and Related Problems , 1982, FOCS.