Examination of antigenic proteins of Trypanosoma cruzi to fabricate an epitope-based subunit vaccine by exploiting epitope mapping mechanism.

[1]  R. Tarleton Depletion of CD8+ T cells increases susceptibility and reverses vaccine-induced immunity in mice infected with Trypanosoma cruzi. , 1990, Journal of immunology.

[2]  P. A. Peterson,et al.  Emerging principles for the recognition of peptide antigens by MHC class I molecules. , 1992, Science.

[3]  R. Gazzinelli,et al.  Immunological control of Trypanosoma cruzi infection and pathogenesis of Chagas' disease. , 1997, International archives of allergy and immunology.

[4]  Kevin Marsh,et al.  Parasite antigens on the infected red cell surface are targets for naturally acquired immunity to malaria , 1998, Nature Medicine.

[5]  Z. Layrisse,et al.  HLA class II DRB1, DQB1, DPB1 polymorphism and cardiomyopathy due to Trypanosoma cruzi chronic infection. , 2000, Human immunology.

[6]  S. Akira,et al.  Activation of Toll-Like Receptor-2 by Glycosylphosphatidylinositol Anchors from a Protozoan Parasite1 , 2001, The Journal of Immunology.

[7]  Norbert Attig,et al.  Introduction to Molecular Dynamics Simulation , 2004 .

[8]  R. Cano,et al.  Cruzipain, a major Trypanosoma cruzi cystein protease in the host-parasite interplay , 2006 .

[9]  Gajendra P. S. Raghava,et al.  AlgPred: prediction of allergenic proteins and mapping of IgE epitopes , 2006, Nucleic Acids Res..

[10]  Manfred J. Sippl,et al.  Thirty years of environmental health research--and growing. , 1996, Nucleic Acids Res..

[11]  Morten Nielsen,et al.  Large-scale validation of methods for cytotoxic T-lymphocyte epitope prediction , 2007, BMC Bioinformatics.

[12]  Wei Li,et al.  ElliPro: a new structure-based tool for the prediction of antibody epitopes , 2008, BMC Bioinformatics.

[13]  G. Cerqueira,et al.  Genomic organization and expression profile of the mucin-associated surface protein (masp) family of the human pathogen Trypanosoma cruzi , 2009, Nucleic acids research.

[14]  Morten Nielsen,et al.  Peptide binding predictions for HLA DR, DP and DQ molecules , 2010, BMC Bioinformatics.

[15]  A. Todeschini,et al.  The trans-Sialidase from Trypanosoma cruzi a Putative Target for Trypanocidal Agents , 2010 .

[16]  Philip Sutton,et al.  Mucin dynamics and enteric pathogens , 2011, Nature Reviews Microbiology.

[17]  Jinbo Xu,et al.  Raptorx: Exploiting structure information for protein alignment by statistical inference , 2011, Proteins.

[18]  D. Correia,et al.  Co-infection Trypanosoma cruzi/HIV: systematic review (1980-2010). , 2011, Revista da Sociedade Brasileira de Medicina Tropical.

[19]  Chaok Seok,et al.  GalaxyWEB server for protein structure prediction and refinement , 2012, Nucleic Acids Res..

[20]  R. Tiwari,et al.  Synthetic Toll Like Receptor-4 (TLR-4) Agonist Peptides as a Novel Class of Adjuvants , 2012, PloS one.

[21]  H. D. de Koning,et al.  Drug resistance in African trypanosomiasis: the melarsoprol and pentamidine story. , 2013, Trends in parasitology.

[22]  D. Liggitt,et al.  Trypanosoma cruzi trans-sialidase initiates a program independent of the transcription factors RORγt and Ahr that leads to IL-17 production by activated B cells , 2013, Nature Immunology.

[23]  P. Simarro,et al.  Epidemiology of human African trypanosomiasis , 2014, Clinical epidemiology.

[24]  J. Coura,et al.  Ecoepidemiology, short history and control of Chagas disease in the endemic countries and the new challenge for non-endemic countries , 2014, Memorias do Instituto Oswaldo Cruz.

[25]  J. Maguire Treatment of Chagas' Disease--Time Is Running Out. , 2015, The New England journal of medicine.

[26]  C. S. Sutherland,et al.  Human African trypanosomiasis prevention, treatment and control costs: a systematic review. , 2015, Acta tropica.

[27]  G. Terefe,et al.  Review on Drug Resistant Animal Trypanosomes in Africa and Overseas , 2015 .

[28]  V. Prajapati,et al.  Exploring Leishmania secretory proteins to design B and T cell multi-epitope subunit vaccine using immunoinformatics approach , 2017, Scientific Reports.

[29]  A. Mishra,et al.  Exploring dengue genome to construct a multi-epitope based subunit vaccine by utilizing immunoinformatics approach to battle against dengue infection , 2017, Scientific Reports.

[30]  Dima Kozakov,et al.  The ClusPro web server for protein–protein docking , 2017, Nature Protocols.

[31]  V. Monteón,et al.  A Brief View of the Surface Membrane Proteins from Trypanosoma cruzi , 2017, Journal of parasitology research.

[32]  Bjoern Peters,et al.  BepiPred-2.0: improving sequence-based B-cell epitope prediction using conformational epitopes , 2017, Nucleic Acids Res..

[33]  V. Prajapati,et al.  Conglomeration of novel Culex quinquefasciatus salivary proteins to contrive multi-epitope subunit vaccine against infections caused by blood imbibing transmitter. , 2018, International journal of biological macromolecules.

[34]  V. Prajapati,et al.  Immunoinformatics approaches to design a novel multi-epitope subunit vaccine against HIV infection. , 2018, Vaccine.

[35]  A. Mishra,et al.  Excavating chikungunya genome to design B and T cell multi-epitope subunit vaccine using comprehensive immunoinformatics approach to control chikungunya infection. , 2018, Infection, genetics and evolution : journal of molecular epidemiology and evolutionary genetics in infectious diseases.

[36]  V. Prajapati,et al.  Scrutinizing Mycobacterium tuberculosis membrane and secretory proteins to formulate multiepitope subunit vaccine against pulmonary tuberculosis by utilizing immunoinformatic approaches. , 2018, International journal of biological macromolecules.

[37]  V. Prajapati,et al.  Development of multi-epitope driven subunit vaccine in secretory and membrane protein of Plasmodium falciparum to convey protection against malaria infection. , 2018, Vaccine.