Journal of the American Statistical Association Maximum Lq-likelihood Estimation via the Expectation-maximization Algorithm: a Robust Estimation of Mixture Models Maximum Lq-likelihood Estimation via the Expectation-maximization Algorithm: a Robust Estimation of Mixture Models

We introduce a maximum Lq-likelihood estimation (MLqE) of mixture models using our proposed expectation-maximization (EM) algorithm, namely the EM algorithm with Lq-likelihood (EM-Lq). Properties of the MLqE obtained from the proposed EM-Lq are studied through simulated mixture model data. Compared with the maximum likelihood estimation (MLE), which is obtained from the EM algorithm, the MLqE provides a more robust estimation against outliers for small sample sizes. In particular, we study the performance of the MLqE in the context of the gross error model, where the true model of interest is a mixture of two normal distributions, and the contamination component is a third normal distribution with a large variance. A numerical comparison between the MLqE and the MLE for this gross error model is presented in terms of Kullback–Leibler (KL) distance and relative efficiency.

[1]  A. Gordaliza,et al.  Robustness Properties of k Means and Trimmed k Means , 1999 .

[2]  Anne Lohrli Chapman and Hall , 1985 .

[3]  Kjell A. Doksum,et al.  Mathematical Statistics: Basic Ideas and Selected Topics, Volume I, Second Edition , 2015 .

[4]  P. J. Green,et al.  Density Estimation for Statistics and Data Analysis , 1987 .

[5]  Carolyn Pillers Dobler,et al.  Mathematical Statistics , 2002 .

[6]  David A. Landgrebe,et al.  Robust parameter estimation for mixture model , 2000, IEEE Trans. Geosci. Remote. Sens..

[7]  S. Ng,et al.  Robust Cluster Analysis via Mixture Models , 2006 .

[8]  Yuhong Yang,et al.  Maximum Lq-likelihood estimation. , 2010, 1002.4533.

[9]  Xiao-Li Meng,et al.  Maximum likelihood estimation via the ECM algorithm: A general framework , 1993 .

[10]  New York Dover,et al.  ON THE CONVERGENCE PROPERTIES OF THE EM ALGORITHM , 1983 .

[11]  D. Rubin,et al.  Maximum likelihood from incomplete data via the EM - algorithm plus discussions on the paper , 1977 .

[12]  Geoffrey J. McLachlan,et al.  Robust mixture modelling using the t distribution , 2000, Stat. Comput..

[13]  D. Hunter,et al.  Optimization Transfer Using Surrogate Objective Functions , 2000 .

[14]  Shuguang Cui,et al.  A $q$-Parameterized Deterministic Annealing EM Algorithm Based on Nonextensive Statistical Mechanics , 2008, IEEE Transactions on Signal Processing.

[15]  R. Redner,et al.  Mixture densities, maximum likelihood, and the EM algorithm , 1984 .

[16]  Carlos Matrán,et al.  Robust estimation in the normal mixture model based on robust clustering , 2008 .

[17]  P. Bickel,et al.  Mathematical Statistics: Basic Ideas and Selected Topics , 1977 .

[18]  Adele Cutler,et al.  Information Ratios for Validating Mixture Analysis , 1992 .

[19]  Bernard W. Silverman,et al.  Density Estimation for Statistics and Data Analysis , 1987 .