Massless $p2$-brane modes and the critical line

We consider a p2-brane model as a theory of maps from the vertices of the Bruhat-Tits tree times Z into Rd. We show that in order for the worldsheet time evolution to be unitary, a certain spectral parameter of the model must localize at special loci in the complex plane, which include the (0,1) interval and the critical line of real part 1/2. The excitations of the model are supported at these loci, with commutation relations closely resembling those of the usual bosonic string. We show that the usual Hamiltonian, momentum, and angular momentum are conserved quantities, and the Poincaré algebra is obeyed. Assuming an Euler product relation for the spectrum, the Riemann zeta zeros on the critical line have spectral interpretation as the massless photon and graviton in the Archimedean theory. nuhep-th/21-09 ar X iv :2 11 0. 15 37 8v 1 [ he pth ] 2 8 O ct 2 02 1

[1]  W. A. Z'uniga-Galindo,et al.  Acausal quantum theory for non-Archimedean scalar fields , 2018, Reviews in Mathematical Physics.

[2]  S. Gubser,et al.  Melonic theories over diverse number systems , 2017, Physical Review D.

[3]  Ling-Yan Hung,et al.  Bending the Bruhat-Tits tree. Part I. Tensor network and emergent Einstein equations , 2021, Journal of High Energy Physics.

[4]  W. A. Zúñiga-Galindo,et al.  Regularization of p-adic string amplitudes, and multivariate local zeta functions , 2016, Letters in Mathematical Physics.

[5]  E. Witten,et al.  Non-archimedean string dynamics , 1988 .

[6]  Ashoke Sen,et al.  Tachyon condensation and brane descent relations in p-adic string theory , 2000 .

[7]  Witten On background-independent open-string field theory. , 1992, Physical review. D, Particles and fields.

[8]  Ling-Yan Hung,et al.  Emergent Einstein Equation in p-adic Conformal Field Theory Tensor Networks. , 2021, Physical review letters.

[9]  Edward Witten,et al.  ADELIC STRING AMPLITUDES , 1987 .

[10]  S. Gubser,et al.  O(N) and O(N) and O(N) , 2017, Journal of High Energy Physics.

[11]  General relativity from $p$-adic strings , 2019, 1901.02013.

[12]  S. Gubser,et al.  Geodesic bulk diagrams on the Bruhat-Tits tree , 2017, 1704.01149.

[13]  Wei Li,et al.  p-adic CFT is a holographic tensor network , 2019, Journal of High Energy Physics.

[14]  Bogdan Stoica,et al.  From $p$-adic to Archimedean Physics: Renormalization Group Flow and Berkovich Spaces , 2020, 2001.01725.

[15]  C. Jepsen,et al.  p-adic Mellin amplitudes , 2018, Journal of High Energy Physics.

[16]  S. Gubser,et al.  Continuum limits of sparse coupling patterns , 2018, Physical Review D.

[17]  D. Ghoshal p-adic string theories provide lattice Discretization to the ordinary string worldsheet. , 2006, Physical review letters.

[18]  S. Gubser,et al.  Higher melonic theories , 2018, Journal of High Energy Physics.

[19]  C. Jepsen,et al.  Recursion relations in p -adic Mellin Space , 2018, Journal of Physics A: Mathematical and Theoretical.

[20]  Wei Li,et al.  Wilson line networks in p-adic AdS/CFT , 2018, Journal of High Energy Physics.

[21]  S. Gubser,et al.  Spin in p -adic AdS/CFT , 2018, Journal of Physics A: Mathematical and Theoretical.

[22]  Matthew Baker,et al.  An introduction to Berkovich analytic spaces and non-archimedean potential theory on curves , 2008 .

[23]  A. Zabrodin Non-archimedean strings and Bruhat-Tits trees , 1989 .

[24]  M. Marcolli Holographic codes on Bruhat–Tits buildings and Drinfeld symmetric spaces , 2018, Pure and Applied Mathematics Quarterly.

[25]  P. Freund,et al.  Adelic string N-point amplitudes☆ , 1989 .

[26]  S. Gubser,et al.  p-Adic AdS/CFT , 2016, 1605.01061.

[27]  W. A. Zúñiga-Galindo,et al.  On p-adic string amplitudes in the limit p approaches to one , 2017, Journal of High Energy Physics.

[28]  S. Gubser,et al.  Non-local non-linear sigma models , 2019, Journal of High Energy Physics.

[29]  W. A. Z'uniga-Galindo,et al.  Local Zeta Functions and Koba-Nielsen String Amplitudes , 2021, Symmetry.

[30]  Notes on exchange interactions in holographic p-adic CFT , 2017, 1705.05678.

[31]  W. A. Z'uniga-Galindo,et al.  Meromorphic continuation of Koba-Nielsen string amplitudes , 2019, Journal of High Energy Physics.

[32]  S. Gubser,et al.  Edge length dynamics on graphs with applications to p-adic AdS/CFT , 2016, Journal of High Energy Physics.

[33]  Ling-Yan Hung,et al.  Bending the Bruhat-Tits tree. Part II. The p-adic BTZ black hole and local diffeomorphism on the Bruhat-Tits tree , 2021, Journal of High Energy Physics.

[34]  Tensor network and (p-adic) AdS/CFT , 2017, 1703.05445.

[35]  P. Freund,et al.  Non-archimedean strings , 1987 .

[36]  Bounds on the Ricci curvature and solutions to the Einstein equations for weighted graphs , 2020, 2006.06716.