The volume of the coefficient space stability domain of monic polynomials
暂无分享,去创建一个
[1] A. Cohn,et al. Über die Anzahl der Wurzeln einer algebraischen Gleichung in einem Kreise , 1922 .
[2] R. UNBEHAUEN. Ein Beitrag zur Stabilitätsuntersuchung linearer Abtastsysteme , 1964 .
[3] M. Marden. Geometry of Polynomials , 1970 .
[4] James S. Meditch,et al. A canonical parameter space for linear systems design , 1978 .
[5] V. Kharitonov. Asympotic stability of an equilibrium position of a family of systems of linear differntial equations , 1978 .
[6] ON THE GEOMETRY OF STABLE POLYNOMIALS OF ONE AND TWO VARIABLES , 1979 .
[7] J. Ackermann. Parameter space design of robust control systems , 1980 .
[8] M. Prakash,et al. A geometric root distribution criterion , 1982 .
[9] Ezra Zeheb,et al. A general property of the transformation matrices associated with the n-variable bilinear transformation , 1984 .
[10] Huang Lin,et al. Root locations of an entire polytope of polynomials: It suffices to check the edges , 1987, 1987 American Control Conference.