Local Existence and Uniqueness of Spatially Quasi-Periodic Solutions to the Generalized KdV Equation
暂无分享,去创建一个
David Damanik | Yong Li | Fei Xu | D. Damanik | Fei Xu | Yong Li
[1] P. Yuditskii,et al. Almost periodic Jacobi matrices with homogeneous spectrum, infinite dimensional Jacobi inversion, and hardy spaces of character-automorphic functions , 1997 .
[2] Percy Deift,et al. Some open problems in random matrix theory and the theory of integrable systems , 2007, 0712.0849.
[3] Luis Vega,et al. Well-posedness of the initial value problem for the Korteweg-de Vries equation , 1991 .
[4] Robert M. Miura,et al. Korteweg-de Vries Equation and Generalizations. I. A Remarkable Explicit Nonlinear Transformation , 1968 .
[5] David Damanik,et al. On the Existence and Uniqueness of Global Solutions for the KdV Equation with Quasi-Periodic Initial Data , 2012, 1212.2674.
[6] W. Craig. The trace formula for Schrödinger operators on the line , 1989 .
[7] D. Damanik,et al. On the inverse spectral problem for the quasi-periodic Schrödinger equation , 2012, 1209.4331.
[8] Spectral Properties of a Class of Reflectionless Schr , 2006, math/0603103.
[9] T. Kappeler,et al. Nonuniqueness for solutions of the Korteweg-de Vries equation , 1989 .
[10] D. Damanik,et al. Almost periodicity in time of solutions of the KdV equation , 2015, Duke Mathematical Journal.
[11] P. Yuditskii,et al. KdV hierarchy via Abelian coverings and operator identities , 2018, Transactions of the American Mathematical Society, Series B.
[12] S. Kotani. Construction of KdV flow I. Tau-Function via Weyl Function , 2018, Zurnal matematiceskoj fiziki, analiza, geometrii.
[13] C. S. Gardner,et al. Korteweg‐de Vries Equation and Generalizations. II. Existence of Conservation Laws and Constants of Motion , 1968 .
[14] P. Yuditskii,et al. Almost periodic Sturm-Liouville operators with Cantor homogeneous spectrum , 1995 .
[15] M. Christ. POWER SERIES SOLUTION OF A NONLINEAR SCHR ¨ ODINGER EQUATION , 2005, math/0503368.