The local microscale problem in the multiscale modeling of strongly heterogeneous media: Effects of boundary conditions and cell size
暂无分享,去创建一个
E Weinan | Xingye Yue | E. Weinan | Xingye Yue | Weinan E
[1] J. Bear. Dynamics of Fluids in Porous Media , 1975 .
[2] L. Durlofsky. Numerical calculation of equivalent grid block permeability tensors for heterogeneous porous media , 1991 .
[3] V. Zhikov,et al. Homogenization of Differential Operators and Integral Functionals , 1994 .
[4] J. Q. Broughton,et al. Concurrent coupling of length scales: Methodology and application , 1999 .
[5] S. Torquato,et al. Scale effects on the elastic behavior of periodic andhierarchical two-dimensional composites , 1999 .
[6] T. Hou,et al. Analysis of upscaling absolute permeability , 2002 .
[7] Andrey L. Piatnitski,et al. Approximations of Effective Coefficients in Stochastic Homogenization , 2002 .
[8] L. Durlofsky,et al. Use of Border Regions for Improved Permeability Upscaling , 2003 .
[9] E Weinan,et al. The Heterognous Multiscale Methods , 2003 .
[10] E. Weinan,et al. Analysis of the heterogeneous multiscale method for elliptic homogenization problems , 2004 .
[11] S. Torquato,et al. Random Heterogeneous Materials: Microstructure and Macroscopic Properties , 2005 .
[12] E. Vanden-Eijnden,et al. The Heterogeneous Multiscale Method: A Review , 2007 .