Dipole cosmology: the Copernican paradigm beyond FLRW

We introduce the dipole cosmological principle, the idea that the Universe is a maximally Copernican cosmology, compatible with a cosmic flow. It serves as the most symmetric paradigm that generalizes the FLRW ansatz, in light of the increasingly numerous (but still tentative) hints that have emerged in the last two decades for a non-kinematic component in the CMB dipole. Einstein equations in our “dipole cosmology” are still ordinary differential equations — but instead of the two Friedmann equations, now we have four. The two new functions can be viewed as an anisotropic scale factor that breaks the isotropy group from SO(3) to U(1), and a “tilt” that captures the cosmic flow velocity. The result is an axially isotropic, tilted Bianchi V/VII_h cosmology. We assess the possibility of model building within the dipole cosmology paradigm, and discuss the dynamics of expansion rate, anisotropic shear and tilt, in various examples. A key observation is that the cosmic flow (tilt) can grow even while the anisotropy (shear) dies down. Remarkably, this can happen even in an era of late time acceleration.

[1]  C. Krishnan,et al.  A tilt instability in the cosmological principle , 2022, The European Physical Journal C.

[2]  L. Shamir,et al.  Is the observable Universe consistent with the cosmological principle? , 2022, Classical and Quantum Gravity.

[3]  R. Mohayaee,et al.  A Challenge to the Standard Cosmological Model , 2022, The Astrophysical Journal Letters.

[4]  S. Capozziello,et al.  Revealing Intrinsic Flat $\Lambda$CDM Biases with Standardizable Candles , 2022, 2203.10558.

[5]  Ryan E. Keeley,et al.  Cosmology Intertwined: A Review of the Particle Physics, Astrophysics, and Cosmology Associated with the Cosmological Tensions and Anomalies , 2022, Journal of High Energy Astrophysics.

[6]  Tom Rudelius Constraints on early dark energy from the axion weak gravity conjecture , 2022, Journal of Cosmology and Astroparticle Physics.

[7]  V. Makarov,et al.  Testing the Cosmological Principle: Astrometric Limits on Systemic Motion of Quasars at Different Cosmological Epochs , 2022, The Astrophysical Journal Letters.

[8]  Wonwoo Lee,et al.  Is local H 0 at odds with dark energy EFT? , 2022, Journal of Cosmology and Astroparticle Physics.

[9]  C. Krishnan,et al.  $H_0$ as a Universal FLRW Diagnostic , 2022, 2201.13384.

[10]  M. Chu,et al.  Directional variations of cosmological parameters from the Planck CMB data , 2022, Physical Review D.

[11]  C. Tsagas The deceleration parameter in ‘tilted’ universes: generalising the Friedmann background , 2021, The European Physical Journal C.

[12]  D. Schwarz,et al.  Inference of the cosmic rest-frame from supernovae Ia , 2021, Astronomy & Astrophysics.

[13]  D. Parkinson,et al.  Cosmic Flow Measurement and Mock Sampling Algorithm of Cosmicflows-4 Tully−Fisher Catalog , 2021, The Astrophysical Journal.

[14]  O. Luongo,et al.  On Larger $H_0$ Values in the CMB Dipole Direction , 2021, 2108.13228.

[15]  A. Singal Solar system peculiar motion from the Hubble diagram of quasars and testing the Cosmological Principle , 2021, Monthly notices of the Royal Astronomical Society.

[16]  A. Singal Peculiar motion of Solar system from the Hubble diagram of supernovae Ia and its implications for cosmology , 2021, Monthly Notices of the Royal Astronomical Society.

[17]  B. Wandelt,et al.  Bayesian estimation of our local motion from the Planck-2018 CMB temperature map , 2021, Journal of Cosmology and Astroparticle Physics.

[18]  M. M. Sheikh-Jabbari,et al.  Hints of FLRW breakdown from supernovae , 2021, Physical Review D.

[19]  S. Capozziello,et al.  Modified Gravity and Cosmology: An Update by the CANTATA Network , 2021, 2105.12582.

[20]  M. M. Sheikh-Jabbari,et al.  Does Hubble tension signal a breakdown in FLRW cosmology? , 2021, Classical and Quantum Gravity.

[21]  M. Ramos-Ceja,et al.  Cosmological implications of the anisotropy of ten galaxy cluster scaling relations , 2021, Astronomy & Astrophysics.

[22]  A. Melchiorri,et al.  In the realm of the Hubble tension—a review of solutions , 2021, Classical and Quantum Gravity.

[23]  L. Verde,et al.  Trouble beyond H0 and the new cosmic triangles , 2021, 2102.05066.

[24]  M. Quartin,et al.  First Constraints on the Intrinsic CMB Dipole and Our Velocity with Doppler and Aberration. , 2020, Physical review letters.

[25]  M. M. Sheikh-Jabbari,et al.  Running Hubble Tension and a H0 Diagnostic. , 2020, 2011.02858.

[26]  Eleonora Di Valentino A combined analysis of the H0 late time direct measurements and the impact on the Dark Energy sector , 2020, 2011.00246.

[27]  Sebastian von Hausegger,et al.  A Test of the Cosmological Principle with Quasars , 2020, 2009.14826.

[28]  Tristan L. Smith,et al.  Cosmology Intertwined II: The Hubble Constant Tension , 2020, 2008.11284.

[29]  M. M. Sheikh-Jabbari,et al.  Hubble sinks in the low-redshift swampland , 2020, 2006.00244.

[30]  M. Ramos-Ceja,et al.  Probing cosmic isotropy with a new X-ray galaxy cluster sample through the LX–T scaling relation , 2020, Astronomy & Astrophysics.

[31]  R. Mohayaee,et al.  The impact of peculiar velocities on supernova cosmology , 2020, 2003.10420.

[32]  Ruchika,et al.  Is there an early Universe solution to Hubble tension? , 2020, Physical Review D.

[33]  M. Rameez,et al.  Is there really a Hubble tension? , 2019, Classical and Quantum Gravity.

[34]  L. Verde,et al.  Tensions between the early and late Universe , 2019, Nature Astronomy.

[35]  Stefan Hilbert,et al.  H0LiCOW – XIII. A 2.4 per cent measurement of H0 from lensed quasars: 5.3σ tension between early- and late-Universe probes , 2019, Monthly Notices of the Royal Astronomical Society.

[36]  R. Maartens,et al.  Testing the cosmological principle in the radio sky , 2019, Journal of Cosmology and Astroparticle Physics.

[37]  Tristan L. Smith,et al.  Early Dark Energy can Resolve the Hubble Tension. , 2018, Physical review letters.

[38]  S. Garg,et al.  Bounds on slow roll at the boundary of the landscape , 2018, Journal of High Energy Physics.

[39]  H. Ooguri,et al.  Distance and de Sitter conjectures on the Swampland , 2018, Physics Letters B.

[40]  R. Maartens,et al.  Testing the standard model of cosmology with the SKA: the cosmic radio dipole , 2018, Monthly Notices of the Royal Astronomical Society.

[41]  R. Mohayaee,et al.  Evidence for anisotropy of cosmic acceleration , 2018, Astronomy & Astrophysics.

[42]  S. Garg,et al.  Bounds on slow roll and the de Sitter Swampland , 2018, Journal of High Energy Physics.

[43]  Hirosi Ooguri,et al.  De Sitter Space and the Swampland , 2018, 1806.08362.

[44]  R. B. Barreiro,et al.  Planck 2018 results , 2018, Astronomy & Astrophysics.

[45]  Glenn D. Starkman,et al.  CMB anomalies after Planck , 2015, 1510.07929.

[46]  G. Ellis,et al.  Relativistic Cosmology: The standard model and extensions , 2012 .

[47]  M. Sheikh-Jabbari,et al.  Revisiting Cosmic No-Hair Theorem for Inflationary Settings , 2012, 1203.0219.

[48]  P. Lilje,et al.  INCREASING EVIDENCE FOR HEMISPHERICAL POWER ASYMMETRY IN THE FIVE-YEAR WMAP DATA , 2009, 0903.1229.

[49]  D. Kocevski,et al.  A Measurement of Large-Scale Peculiar Velocities of Clusters of Galaxies: Results and Cosmological Implications , 2008, 0809.3734.

[50]  P. Lilje,et al.  Hemispherical Power Asymmetry in the Third-Year Wilkinson Microwave Anisotropy Probe Sky Maps , 2007, astro-ph/0701089.

[51]  A. Coley,et al.  Fluid observers and tilting cosmology , 2006, gr-qc/0605128.

[52]  Marcus Spradlin,et al.  Les Houches lectures on de Sitter space , 2001, hep-th/0110007.

[53]  R. Wald Asymptotic behavior of homogeneous cosmological models in the presence of a positive cosmological constant , 1983 .

[54]  G. Ellis,et al.  Tilted homogeneous cosmological models , 1973 .

[55]  R. Wagoner,et al.  Gravitation and Cosmology: Principles and Applications of the General Theory of Relativity , 1973 .

[56]  G. Ellis,et al.  Solutions of Einstein's equations for a fluid which exhibit local rotational symmetry , 1968 .

[57]  H. Brück Cosmology , 1951, Peirce's Pragmatism.

[58]  S. Capozziello,et al.  Revealing Intrinsic Flat ΛCDM Biases with Standardizable Candles , 2022 .

[59]  Henk van Elst,et al.  Cosmological models: Cargese lectures 1998 , 1998 .

[60]  G. Ellis,et al.  On the expected anisotropy of radio source counts , 1984 .

[61]  G. Ellis,et al.  A class of homogeneous cosmological models , 1969 .