Evaluation of the RCS depressurization strategy for the high pressure sequences by using SCDAP/RELAP5

Abstract As part of the evaluation for a severe accident management strategy, a reactor coolant system (RCS) depressurization in optimized power reactor (OPR)1000 has been evaluated by using the SCDAP/RELAP5 computer code. An indirect RCS depressurization by a secondary depressurization by using a feed and bleed operation has been estimated for a small break loss of coolant accident (LOCA) without a safety injection (SI). Also, a direct RCS depressurization by using the safety depressurization system (SDS) has been estimated for the total loss of feed water (LOFW). The SCDAP/RELAP5 results have shown that the secondary feed and bleed operation can depressurize the RCS, but it cannot depressurize the RCS sufficiently enough. For this reason, a greater direct RCS depressurization by using the SDS is necessary for the 1.35 in. break LOCA without SI. A proper RCS depressurization time and capacity leads to a delay in the reactor vessel failure time from 7.5 to 10.7 h. An opening of two SDS valves can depressurize the RCS sufficiently enough and the proper RCS depressurization time and capacity leads to a delay in the reactor vessel failure time of approximately 5 h for the total LOFW. An opening of one SDS valve cannot depressurize the RCS sufficiently enough.