Proof-guided underapproximation-widening for multi-process systems

This paper presents a procedure for the verification of multi-process systems based on considering a series of underapproximated models. The procedure checks models with an increasing set of allowed interleavings of the given set of processes, starting from a single interleaving. The procedure relies on SAT solvers' ability to produce proofs of unsatisfiability: from these proofs it derives information that guides the process of adding interleavings on the one hand, and determines termination on the other. The presented approach is integrated in a SAT-based Bounded Model Checking (BMC) framework. Thus, a BMC formulation of a multi-process system is introduced, which allows controlling which interleavings are considered. Preliminary experimental results demonstrate the practical impact of the presented method.

[1]  Robert K. Brayton,et al.  Partial-Order Reduction in Symbolic State Space Exploration , 1997, CAV.

[2]  Armin Biere,et al.  Symbolic Model Checking without BDDs , 1999, TACAS.

[3]  Helmut Veith,et al.  Automated Abstraction Refinement for Model Checking Large State Spaces Using SAT Based Conflict Analysis , 2002, FMCAD.

[4]  Doron A. Peled,et al.  Combining partial order reductions with on-the-fly model-checking , 1994, Formal Methods Syst. Des..

[5]  Pierre Wolper,et al.  Using partial orders for the efficient verification of deadlock freedom and safety properties , 1991, Formal Methods Syst. Des..

[6]  Shmuel Katz,et al.  A Mechanized Proof Environment for the Convenient Computations Proof Method , 2003, Formal Methods Syst. Des..

[7]  Ofer Strichman,et al.  Bounded model checking , 2003, Adv. Comput..

[8]  Daniel Kroening,et al.  Efficient Computation of Recurrence Diameters , 2002, VMCAI.

[9]  Kavita Ravi,et al.  High-density reachability analysis , 1995, ICCAD.

[10]  Edsger W. Dijkstra,et al.  A Discipline of Programming , 1976 .

[11]  Doron A. Peled,et al.  Combining Software and Hardware Verification Techniques , 2002, Formal Methods Syst. Des..

[12]  Ofer Strichman,et al.  SAT Based Abstraction-Refinement Using ILP and Machine Learning Techniques , 2002, CAV.

[13]  Antti Valmari,et al.  A stubborn attack on state explosion , 1990, Formal Methods Syst. Des..

[14]  Doron A. Peled,et al.  Verification of distributed programs using representative interleaving sequences , 1992, Distributed Computing.

[15]  Kenneth L. McMillan,et al.  Interpolation and SAT-Based Model Checking , 2003, CAV.

[16]  Henrik Reif Andersen,et al.  Stepwise CTL Model Checking of State/Event Systems , 1999, CAV.

[17]  Kenneth L. McMillan,et al.  Automatic Abstraction without Counterexamples , 2003, TACAS.

[18]  Alberto L. Sangiovanni-Vincentelli,et al.  An Iterative Approach to Language Containment , 1993, CAV.

[19]  Kavita Ravi,et al.  Hints to accelerate Symbolic Traversal , 1999, CHARME.

[20]  Stephan Merz,et al.  Model Checking , 2000 .

[21]  Mary Sheeran,et al.  Checking Safety Properties Using Induction and a SAT-Solver , 2000, FMCAD.

[22]  Masahiro Fujita,et al.  Symbolic model checking using SAT procedures instead of BDDs , 1999, DAC '99.

[23]  Daniel Geist,et al.  Symbolic Localization Reduction with Reconstruction Layering and Backtracking , 2002, CAV.

[24]  Helmut Veith,et al.  Counterexample-guided abstraction refinement for symbolic model checking , 2003, JACM.

[25]  Robert P. Kurshan,et al.  Computer-Aided Verification of Coordinating Processes: The Automata-Theoretic Approach , 2014 .

[26]  Edmund M. Clarke,et al.  Counterexample-guided abstraction refinement , 2003, 10th International Symposium on Temporal Representation and Reasoning, 2003 and Fourth International Conference on Temporal Logic. Proceedings..

[27]  Orna Grumberg,et al.  Combining Symmetry Reduction and Under-Approximation for Symbolic Model Checking , 2002, Formal Methods Syst. Des..

[28]  Joël Ouaknine,et al.  Completeness and Complexity of Bounded Model Checking , 2004, VMCAI.