A modified Schur-complement method for handling dense columns in interior-point methods for linear programming

The main computational work in interior-point methods for linear programming (LP) is to solve a least-squares problem. The normal equations are often used, but if the LP constraint matrix contains a nearly dense column the normal-equations matrix will be nearly dense. Assuming that the nondense part of the constraint matrix is of full rank, the Schur complement can be used to handle dense columns. In this article we propose a modified Schur-complement method that relaxes this assumption. Encouraging numerical results are presented.

[1]  G. Stewart Modifying pivot elements in Gaussian elimination , 1974 .

[2]  M. Heath Some Extensions of an Algorithm for Sparse Linear Least Squares Problems , 1982 .

[3]  Gene H. Golub,et al.  Matrix computations , 1983 .

[4]  Michael A. Saunders,et al.  On projected newton barrier methods for linear programming and an equivalence to Karmarkar’s projective method , 1986, Math. Program..

[5]  Aeneas Marxen Primal Barrier Methods for Linear Programming , 1989 .

[6]  Marxen Primal barrier methods for linear programmming: Technical report , 1989 .

[7]  Mauricio G. C. Resende,et al.  Data Structures and Programming Techniques for the Implementation of Karmarkar's Algorithm , 1989, INFORMS J. Comput..

[8]  Mauricio G. C. Resende,et al.  An implementation of Karmarkar's algorithm for linear programming , 1989, Math. Program..

[9]  Clyde L. Monma,et al.  Further Development of a Primal-Dual Interior Point Method , 1990, INFORMS J. Comput..

[10]  I. Lustig,et al.  Computational experience with a primal-dual interior point method for linear programming , 1991 .

[11]  R. Vanderbei Splitting dense columns in sparse linear systems , 1991 .

[12]  Roy E. Marsten,et al.  On Implementing Mehrotra's Predictor-Corrector Interior-Point Method for Linear Programming , 1992, SIAM J. Optim..

[13]  Michael A. Saunders,et al.  Commentary - Major Cholesky Would Feel Proud , 1994, INFORMS J. Comput..

[14]  Erling D. Andersen,et al.  Presolving in linear programming , 1995, Math. Program..

[15]  Knud D. Andersen An Efficient Newton Barrier Method for Minimizing a Sum of Euclidean Norms , 1993, SIAM J. Optim..

[16]  Y. Ye,et al.  Combining Interior-Point and Pivoting Algorithms for Linear Programming , 1996 .