A Quasi-Three-Dimensional Turbomachinery Blade Design System: Part I—Throughflow Analysis

The purpose of this work has been to develop a quasi-three-dimensional blade design and analysis system incorporating fully linked throughflow, blade-to-blade and blade section stacking programs. In Part I of the paper, the throughflow analysis is developed. This is based on a rigorous passage averaging technique to derive throughflow equations valid inside a blade row. The advantages of this approach are that the meridional streamsurface does not have to be of a prescribed shape, and by introducing density weighted averages the continuity equation is of an exact form. Included in the equations are the effects of blade blockage, blade forces, blade-to-blade variations and loss. The solution of the equations is developed for the well-known streamline curvature method, and the contributions from these extra effects on the radial equilibrium equation are discussed. Part II of the paper incorporates the analysis into a quasi-three-dimensional computing system and demonstrates its operational feasibility.