Tunable X-Band Optoelectronic Oscillators Based on External-Cavity Semiconductor Lasers

Laser diodes with optical feedback can exhibit periodic intensity oscillations at or near the relaxation-oscillation frequency. We demonstrate optoelectronic oscillators based on external-cavity semiconductor lasers in a periodic dynamical regime tunable over the entire <inline-formula> <tex-math notation="LaTeX">$X$ </tex-math></inline-formula>-band. Moreover, unlike standard optoelectronic oscillators, we need not employ the time-dependent optical intensity incident on a photodiode to generate the microwave signal, but rather have the option of generating the electrical microwave signal directly as a voltage <inline-formula> <tex-math notation="LaTeX">$V(t)$ </tex-math></inline-formula> at the laser-diode injection terminals under constant current operation; no photodiode need be involved, thus circumventing optical-to-electrical conversion. We achieve a timing jitter of <inline-formula> <tex-math notation="LaTeX">$\lesssim 10$ </tex-math></inline-formula> ps and a quality factor of <inline-formula> <tex-math notation="LaTeX">$\gtrsim 2\times 10^{5}$ </tex-math></inline-formula> across the entire <inline-formula> <tex-math notation="LaTeX">$X$ </tex-math></inline-formula>-band, that ranges from 6.79 to 11.48 GHz. Tuning is achieved by varying the injection current <inline-formula> <tex-math notation="LaTeX">$J$ </tex-math></inline-formula>.

[1]  Jianping Yao,et al.  A Wideband Frequency Tunable Optoelectronic Oscillator Incorporating a Tunable Microwave Photonic Filter Based on Phase-Modulation to Intensity-Modulation Conversion Using a Phase-Shifted Fiber Bragg Grating , 2012, IEEE Transactions on Microwave Theory and Techniques.

[2]  K. Shore,et al.  Selective excitation of periodic dynamics in external cavity laser diodes , 1996 .

[3]  Michael J. Townsend,et al.  Thomas Piketty: Capital in the twenty-first century , 2014, Public Choice.

[4]  E. Scholl,et al.  Timing Jitter of Passively-Mode-Locked Semiconductor Lasers Subject to Optical Feedback: A Semi-Analytic Approach , 2015, 1507.00542.

[5]  Observation of chaotic itinerancy in the light and carrier dynamics of a semiconductor laser with optical feedback. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[6]  Kestutis Pyragas Continuous control of chaos by self-controlling feedback , 1992 .

[7]  R. Lang,et al.  External optical feedback effects on semiconductor injection laser properties , 1980 .

[8]  Nianqiang Li,et al.  Experimental bifurcation-cascade diagram of an external-cavity semiconductor laser. , 2014, Optics express.

[9]  L. Larger,et al.  Compact optoelectronic microwave oscillators using ultra-high Q whispering gallery mode disk-resonators and phase modulation. , 2010, Optics express.

[10]  A. Locquet,et al.  Mapping the nonlinear dynamics of a laser diode via its terminal voltage. , 2014, Optics letters.

[11]  K. Alan Shore,et al.  Controlling dynamics in external-cavity laser diodes with electronic impulsive delayed feedback , 1998 .

[12]  N. S. Bergano,et al.  Margin measurements in optical amplifier system , 1993, IEEE Photonics Technology Letters.

[13]  Shilong Pan,et al.  A Compact Optoelectronic Oscillator Based on an Electroabsorption Modulated Laser , 2014, IEEE Photonics Technology Letters.

[14]  Daan Lenstra,et al.  The influence of feedback intensity on longitudinal mode properties and optical noise in index-guided semiconductor lasers , 1984 .

[15]  R.D. Esman,et al.  RF Photonics , 2008, Journal of Lightwave Technology.

[16]  A. Locquet,et al.  A multi-GHz chaotic optoelectronic oscillator based on laser terminal voltage , 2016, 1709.06819.

[17]  Pochi Yeh,et al.  Photonics: Optical Electronics in Modern Communications (The Oxford Series in Electrical and Computer Engineering) , 1997 .

[18]  Eckehard Schöll,et al.  Analytical approach to modulation properties of quantum dot lasers , 2011 .

[19]  Weiwei Hu,et al.  Wideband tunable optoelectronic oscillator based on a phase modulator and a tunable optical filter. , 2013, Optics letters.

[20]  F. Matera,et al.  Role of Q-factor and of time jitter in the performance evaluation of optically amplified transmission systems , 2000, IEEE Journal of Selected Topics in Quantum Electronics.

[21]  Jianping Yao,et al.  Microwave Photonics: Photonic Generation of Microwave and Millimeter-wave Signals , 2010 .

[22]  F. Lelarge,et al.  Feedback-resistant p-type doped InAs/InP quantum-dash distributed feedback lasers for isolator-free 10 Gb/s transmission at 1.55 μm , 2010 .

[23]  W. Marsden I and J , 2012 .

[24]  C. Boisrobert,et al.  Fiber Optic Communication Systems , 1979 .

[25]  J. S. Cohen,et al.  The effect of optical feedback on the relaxation oscillation in semiconductor lasers , 1988 .

[26]  L. Maleki,et al.  Optoelectronic microwave oscillator , 1996 .

[27]  Alexandre Locquet,et al.  Experimental route to chaos of an external-cavity semiconductor laser , 2015 .

[28]  Jianping Yao,et al.  Wideband and frequency-tunable microwave generation using an optoelectronic oscillator incorporating a Fabry-Perot laser diode with external optical injection. , 2010, Optics letters.

[29]  L. Maleki,et al.  Converting light into spectrally pure microwave oscillation. , 1996, Optics letters.

[30]  Jianping Yao,et al.  Photonic generation of microwave arbitrary waveforms , 2011, 16th Opto-Electronics and Communications Conference.

[31]  Sze-Chun Chan,et al.  Phase noise characteristics of microwave signals generated by semiconductor laser dynamics. , 2015, Optics express.