Determination of sugar conformation in large RNA oligonucleotides from analysis of dipole–dipole cross correlated relaxation by solution NMR spectroscopy

[1]  P. Pelupessy,et al.  Efficient determination of angles subtended by Cα-Hα and N-HN vectors in proteins via dipole-dipole cross-correlation§ , 1999, Journal of biomolecular NMR.

[2]  Daiwen Yang,et al.  1H-13C DIPOLE-DIPOLE CROSS-CORRELATED SPIN RELAXATION AS A PROBE OF DYNAMICS IN UNFOLDED PROTEINS : APPLICATION TO THE DRKN SH3 DOMAIN , 1999 .

[3]  C. Griesinger,et al.  Transferred Cross-Correlated Relaxation: Application to the Determination of Sugar Pucker in an Aminoacylated tRNA-Mimetic Weakly Bound to EF-Tu , 1999 .

[4]  H. Schwalbe,et al.  Determination of RNA Sugar Pucker Mode from Cross Correlated Relaxation in Solution NMR Spectroscopy. , 1999 .

[5]  H. Schwalbe,et al.  New methylene specific experiments for the measurement of scalar spin-spin coupling constants between protons attached to 13C. , 1998, Journal of magnetic resonance.

[6]  M. Reggelin,et al.  BESTIMMUNG DER ORIENTIERUNG ENTFERNTER INTERATOMARER VEKTOREN IN EINER METALLORGANISCHEN VERBINDUNG AUS KREUZKORRELIERTER RELAXATION VON KERNSPINS , 1998 .

[7]  L. Kay,et al.  A study of protein side-chain dynamics from new 2H auto-correlation and 13C cross-correlation NMR experiments: application to the N-terminal SH3 domain from drk. , 1998, Journal of molecular biology.

[8]  B. Brutscher,et al.  Quantitative investigation of dipole-CSA cross-correlated relaxation by ZQ/DQ spectroscopy. , 1998, Journal of magnetic resonance.

[9]  L. Kay,et al.  A MULTIDIMENSIONAL NMR EXPERIMENT FOR MEASUREMENT OF THE PROTEIN DIHEDRAL ANGLE PSI BASED ON CROSS-CORRELATED RELAXATION BETWEEN 1HALPHA -13CALPHA D IPOLAR AND 13C' (CARBONYL) CHEMICAL SHIFT ANISOTROPY MECHANISMS , 1997 .

[10]  C. Griesinger,et al.  Determination of Homo‐ and Heteronuclear Coupling Constants in Uniformly 13C,15N‐Labeled DNA Oligonucleotides , 1996 .

[11]  Ad Bax,et al.  Solution structure of calcium-free calmodulin , 1995, Nature Structural Biology.

[12]  H. Schwalbe,et al.  Measurement of H,H-Coupling Constants Associated with .nu.1, .nu. 2, and .nu.3 in Uniformly 13C-Labeled RNA by HCC-TOCSY-CCH-E.COSY , 1995 .

[13]  A. Bax,et al.  Rotational dynamics of calcium-free calmodulin studied by 15N-NMR relaxation measurements. , 1995, European journal of biochemistry.

[14]  G. Harbison Interference between J-couplings and cross-relaxation in solution NMR spectroscopy : consequences for macromolecular structure determination , 1993 .

[15]  M Ikura,et al.  Backbone dynamics of calmodulin studied by 15N relaxation using inverse detected two-dimensional NMR spectroscopy: the central helix is flexible. , 1992, Biochemistry.

[16]  R. R. Ernst,et al.  Practical aspects of the E.COSY technique. Measurement of scalar spin-spin coupling constants in peptides , 1987 .

[17]  R. R. Ernst,et al.  Correlation of connected transitions by two‐dimensional NMR spectroscopy , 1986 .

[18]  R. R. Ernst,et al.  Two-dimensional correlation of connected NMR transitions , 1985 .

[19]  M. Sundaralingam,et al.  Conformational analysis of the sugar ring in nucleosides and nucleotides. A new description using the concept of pseudorotation. , 1972, Journal of the American Chemical Society.

[20]  P. S. Hubbard Nonexponential Relaxation of Three‐Spin Systems in Nonspherical Molecules , 1969 .

[21]  T. James,et al.  How to generate accurate solution structures of double-helical nucleic acid fragments using nuclear magnetic resonance and restrained molecular dynamics. , 1995, Methods in enzymology.

[22]  F. D. Leeuw,et al.  The relationship between proton-proton NMR coupling constants and substituent electronegativities—I : An empirical generalization of the karplus equation , 1980 .