Room-temperature electrical control of exciton flux in a van der Waals heterostructure

Devices that rely on the manipulation of excitons—bound pairs of electrons and holes—hold great promise for realizing efficient interconnects between optical data transmission and electrical processing systems. Although exciton-based transistor actions have been demonstrated successfully in bulk semiconductor-based coupled quantum wells1–3, the low temperature required for their operation limits their practical application. The recent emergence of two-dimensional semiconductors with large exciton binding energies4,5 may lead to excitonic devices and circuits that operate at room temperature. Whereas individual two-dimensional materials have short exciton diffusion lengths, the spatial separation of electrons and holes in different layers in heterostructures could help to overcome this limitation and enable room-temperature operation of mesoscale devices6–8. Here we report excitonic devices made of MoS2–WSe2 van der Waals heterostructures encapsulated in hexagonal boron nitride that demonstrate electrically controlled transistor actions at room temperature. The long-lived nature of the interlayer excitons in our device results in them diffusing over a distance of five micrometres. Within our device, we further demonstrate the ability to manipulate exciton dynamics by creating electrically reconfigurable confining and repulsive potentials for the exciton flux. Our results make a strong case for integrating two-dimensional materials in future excitonic devices to enable operation at room temperature.Heterobilayer excitonic devices consisting of two different van der Waals materials, in which excitons are shared between the layers, exhibit electrically controlled switching actions at room temperature.

[1]  N. Grandjean,et al.  Room-temperature transport of indirect excitons in (Al,Ga)N/GaN quantum wells , 2016, 1603.00191.

[2]  S. Sikdar,et al.  Fundamentals and applications , 1998 .

[3]  C. Strunk,et al.  Interlayer exciton dynamics in a dichalcogenide monolayer heterostructure , 2017, 1703.00379.

[4]  K. Novoselov,et al.  High-temperature superfluidity with indirect excitons in van der Waals heterostructures , 2014, Nature Communications.

[5]  Kerstin Pingel,et al.  50 Years of Image Analysis , 2012 .

[6]  Michal Lipson,et al.  Compact electro-optic modulator on silicon-on-insulator substrates using cavities with ultra-small modal volumes. , 2007 .

[7]  K. Novoselov,et al.  Micrometer-scale ballistic transport in encapsulated graphene at room temperature. , 2011, Nano letters.

[8]  Interfacial Charge Transfer Circumventing Momentum Mismatch at Two-Dimensional van der Waals Heterojunctions. , 2017, Nano letters.

[9]  C. Robert,et al.  Exciton radiative lifetime in transition metal dichalcogenide monolayers , 2016, 1603.00277.

[10]  D. Reichman,et al.  Momentum-space indirect interlayer excitons in transition-metal dichalcogenide van der Waals heterostructures , 2018, Nature Physics.

[11]  Excitonic switches operating at around 100 K , 2009 .

[12]  F. Jahnke,et al.  Long-Lived Direct and Indirect Interlayer Excitons in van der Waals Heterostructures. , 2017, Nano letters.

[13]  J. Grossman,et al.  Exciton radiative lifetimes in two-dimensional transition metal dichalcogenides. , 2015, Nano letters.

[14]  Huili Grace Xing,et al.  Exciton dynamics in suspended monolayer and few-layer MoS₂ 2D crystals. , 2013, ACS nano.

[15]  Y. Iwasa,et al.  Exciton Hall effect in monolayer MoS2. , 2017, Nature materials.

[16]  Walter R. L. Lambrecht,et al.  Quasiparticle band structure calculation of monolayer, bilayer, and bulk MoS 2 , 2012 .

[17]  D.A.B. Miller,et al.  Rationale and challenges for optical interconnects to electronic chips , 2000, Proceedings of the IEEE.

[18]  Arthur C. Gossard,et al.  Control of Exciton Fluxes in an Excitonic Integrated Circuit , 2008, Science.

[19]  Aaron M. Jones,et al.  Observation of long-lived interlayer excitons in monolayer MoSe2–WSe2 heterostructures , 2014, Nature Communications.

[20]  Jian Zhou,et al.  Band offsets and heterostructures of two-dimensional semiconductors , 2013 .

[21]  Qianfan Xu,et al.  Micrometre-scale silicon electro-optic modulator , 2005, Nature.

[22]  J. Shan,et al.  Tightly bound excitons in monolayer WSe(2). , 2014, Physical review letters.

[23]  Hsin-Ying Chiu,et al.  Ultrafast and spatially resolved studies of charge carriers in atomically thin molybdenum disulfide , 2012, 1206.6055.

[24]  Determination of band alignment in the single-layer MoS2/WSe2 heterojunction , 2014, Nature communications.

[25]  J. Chauveau,et al.  Transport of indirect excitons in ZnO quantum wells. , 2015, Optics letters.

[26]  Tobias Korn,et al.  Exciton Diffusion and Halo Effects in Monolayer Semiconductors. , 2018, Physical review letters.

[27]  A. Gossard,et al.  Exciton optoelectronic transistor. , 2007, Optics letters.

[28]  Eli Yablonovitch,et al.  Strong interlayer coupling in van der Waals heterostructures built from single-layer chalcogenides , 2014, Proceedings of the National Academy of Sciences.

[29]  M. Paniccia,et al.  A high-speed silicon optical modulator based on a metal–oxide–semiconductor capacitor , 2004, Nature.

[30]  X. Qiao,et al.  Photoluminescence properties and exciton dynamics in monolayer WSe2 , 2014 .

[31]  Kevin W Eliceiri,et al.  NIH Image to ImageJ: 25 years of image analysis , 2012, Nature Methods.

[32]  Raluca Dinu,et al.  High-speed plasmonic phase modulators , 2014, Nature Photonics.

[33]  Jonghwan Kim,et al.  Observation of ultralong valley lifetime in WSe2/MoS2 heterostructures , 2016, Science Advances.

[34]  S. Sarma,et al.  Spintronics: Fundamentals and applications , 2004, cond-mat/0405528.

[35]  A. C. H. Rowe,et al.  Exciton diffusion in WSe2 monolayers embedded in a van der Waals heterostructure , 2018, 1802.09201.