Graphene nanodevices for DNA sequencing.

[1]  C. Dekker,et al.  Plasmonic Nanopores for Trapping, Controlling Displacement, and Sequencing of DNA , 2015, ACS nano.

[2]  Ke Liu,et al.  Identification of single nucleotides in MoS2 nanopores. , 2015, Nature nanotechnology.

[3]  Henny W. Zandbergen,et al.  Controlling Defects in Graphene for Optimizing the Electrical Properties of Graphene Nanodevices , 2015, ACS nano.

[4]  P. Ordejón,et al.  Capacitive DNA Detection Driven by Electronic Charge Fluctuations in a Graphene Nanopore , 2015 .

[5]  M. Prato,et al.  Science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems. , 2015, Nanoscale.

[6]  C. Dekker,et al.  1/f noise in graphene nanopores , 2015, Nanotechnology.

[7]  L. Steinbock,et al.  The emergence of nanopores in next-generation sequencing , 2015, Nanotechnology.

[8]  J. Warner,et al.  Conductance enlargement in picoscale electroburnt graphene nanojunctions , 2015, Proceedings of the National Academy of Sciences.

[9]  Benedict Paten,et al.  Improved data analysis for the MinION nanopore sequencer , 2015, Nature Methods.

[10]  R. Bashir,et al.  Slowing DNA Transport Using Graphene–DNA Interactions , 2015, Advanced functional materials.

[11]  Cees Dekker,et al.  Velocity of DNA during translocation through a solid-state nanopore. , 2015, Nano letters.

[12]  Kyeong-Beom Park,et al.  A Low-Noise Solid-State Nanopore Platform Based on a Highly Insulating Substrate , 2014, Scientific Reports.

[13]  Fenghua Li,et al.  Biocompatible Graphene for Bioanalytical Applications , 2014 .

[14]  P. Alkemade,et al.  Fabrication of hybrid molecular devices using multi-layer graphene break junctions , 2014, Journal of physics. Condensed matter : an Institute of Physics journal.

[15]  Alexander S. Mikheyev,et al.  A first look at the Oxford Nanopore MinION sequencer , 2014, Molecular ecology resources.

[16]  K. Chong,et al.  Impedimetric graphene-based biosensor for the detection of Escherichia coli DNA , 2014 .

[17]  Luke P. Lee,et al.  Graphene nanopore with a self-integrated optical antenna. , 2014, Nano letters.

[18]  B. Nikolić,et al.  First-principles versus semi-empirical modeling of global and local electronic transport properties of graphene nanopore-based sensors for DNA sequencing , 2014, 1408.4300.

[19]  Jian-Xin Zhu,et al.  Next-Generation Epigenetic Detection Technique: Identifying Methylated Cytosine Using Graphene Nanopore. , 2014, The journal of physical chemistry letters.

[20]  C. Schönenberger,et al.  High-yield fabrication of nm-size gaps in monolayer CVD graphene. , 2014, Nanoscale.

[21]  J. Ferrer,et al.  Graphene sculpturene nanopores for DNA nucleobase sensing. , 2014, The journal of physical chemistry. B.

[22]  Hui Xu,et al.  Detection of nucleic acids by graphene-based devices: A first-principles study , 2014 .

[23]  C. Dekker,et al.  Ionic permeability and mechanical properties of DNA origami nanoplates on solid-state nanopores. , 2014, ACS nano.

[24]  J. Seminario,et al.  Assembly of a Noncovalent DNA Junction on Graphene Sheets and Electron Transport Characteristics , 2013 .

[25]  C Raillon,et al.  Detecting the translocation of DNA through a nanopore using graphene nanoribbons. , 2013, Nature nanotechnology.

[26]  A. Balan,et al.  Toward sensitive graphene nanoribbon-nanopore devices by preventing electron beam-induced damage. , 2013, ACS nano.

[27]  Donald Sharon,et al.  A single-molecule long-read survey of the human transcriptome , 2013, Nature Biotechnology.

[28]  S. Lindsay,et al.  Slowing DNA translocation through a nanopore using a functionalized electrode. , 2013, ACS nano.

[29]  Qiang Xu,et al.  Tailoring the hydrophobicity of graphene for its use as nanopores for DNA translocation , 2013, Nature Communications.

[30]  Riccardo Velasco,et al.  An evaluation of the PacBio RS platform for sequencing and de novo assembly of a chloroplast genome , 2013, BMC Genomics.

[31]  Klaus Schulten,et al.  Graphene quantum point contact transistor for DNA sensing , 2013, Proceedings of the National Academy of Sciences.

[32]  J. Rehr,et al.  Correlation dynamics and enhanced signals for the identification of serial biomolecules and DNA bases , 2013, Nanotechnology.

[33]  A. Alivisatos,et al.  3D motion of DNA-Au nanoconjugates in graphene liquid cell electron microscopy. , 2013, Nano letters.

[34]  Sung-Hoon Lee,et al.  Quantum interference in DNA bases probed by graphene nanoribbons , 2013 .

[35]  D. Branton,et al.  Molecule-hugging graphene nanopores , 2013, Proceedings of the National Academy of Sciences.

[36]  Gianaurelio Cuniberti,et al.  Dynamic and electronic transport properties of DNA translocation through graphene nanopores. , 2013, Nano letters.

[37]  Jun-Hyung Cho,et al.  Physisorption of DNA nucleobases on h -BN and graphene: VdW-corrected DFT calculations , 2013, 1302.7171.

[38]  C. Dekker,et al.  Plasmonic nanopore for electrical profiling of optical intensity landscapes. , 2013, Nano letters.

[39]  Cees Dekker,et al.  Controllable atomic scale patterning of freestanding monolayer graphene at elevated temperature. , 2013, ACS nano.

[40]  Eric Pop,et al.  Electrochemistry at the edge of a single graphene layer in a nanopore. , 2013, ACS nano.

[41]  Qi Wang,et al.  Theoretical study on key factors in DNA sequencing with graphene nanopores , 2013 .

[42]  M. Steigerwald,et al.  Building high-throughput molecular junctions using indented graphene point contacts. , 2012, Angewandte Chemie.

[43]  Duy Le,et al.  Physisorption of nucleobases on graphene: a comparative van der Waals study , 2012, Journal of physics. Condensed matter : an Institute of Physics journal.

[44]  H. Swerdlow,et al.  A tale of three next generation sequencing platforms: comparison of Ion Torrent, Pacific Biosciences and Illumina MiSeq sequencers , 2012, BMC Genomics.

[45]  A. Aksimentiev,et al.  Assessing graphene nanopores for sequencing DNA. , 2012, Nano letters.

[46]  T. G. Martin,et al.  DNA origami gatekeepers for solid-state nanopores. , 2012, Angewandte Chemie.

[47]  Yu Tao,et al.  DNA-templated silver nanoclusters-graphene oxide nanohybrid materials: a platform for label-free and sensitive fluorescence turn-on detection of multiple nucleic acid targets. , 2012, The Analyst.

[48]  M. Niederweis,et al.  Reading DNA at single-nucleotide resolution with a mutant MspA nanopore and phi29 DNA polymerase , 2012, Nature Biotechnology.

[49]  K. Shepard,et al.  Integrated nanopore sensing platform with sub-microsecond temporal resolution , 2012, Nature Methods.

[50]  K. Saha,et al.  DNA base-specific modulation of $\mu$A transverse edge currents through a metallic graphene nanoribbon with a nanopore , 2012 .

[51]  R. Ahuja,et al.  Theoretical Study of Electronic Transport through DNA Nucleotides in a Double-Functionalized Graphene Nanogap , 2012, 1202.3040.

[52]  Mark Akeson,et al.  Automated Forward and Reverse Ratcheting of DNA in a Nanopore at Five Angstrom Precision1 , 2012, Nature Biotechnology.

[53]  Haiping Fang,et al.  Nucleobase adsorbed at graphene devices: Enhance bio-sensorics , 2012 .

[54]  E. Pop,et al.  Stacked graphene-Al2O3 nanopore sensors for sensitive detection of DNA and DNA-protein complexes. , 2012, ACS nano.

[55]  Towfiq Ahmed,et al.  Electronic fingerprints of DNA bases on graphene. , 2012, Nano letters.

[56]  Nicholas A W Bell,et al.  DNA origami nanopores. , 2012, Nano letters.

[57]  Charles M. Lieber,et al.  Local electrical potential detection of DNA by nanowire-nanopore sensors , 2011, Nature nanotechnology.

[58]  K. Schulten,et al.  Computational investigation of DNA detection using graphene nanopores. , 2011, ACS nano.

[59]  A. T. Johnson,et al.  In situ electronic characterization of graphene nanoconstrictions fabricated in a transmission electron microscope. , 2011, Nano letters.

[60]  L. Vandersypen,et al.  Room-temperature gating of molecular junctions using few-layer graphene nanogap electrodes. , 2011, Nano letters.

[61]  S. Sanvito,et al.  First-principles study of high-conductance DNA sequencing with carbon nanotube electrodes , 2011, 1109.1531.

[62]  M. Drndić,et al.  DNA base-specific modulation of microampere transverse edge currents through a metallic graphene nanoribbon with a nanopore. , 2011, Nano letters.

[63]  Woo Youn Kim,et al.  The origin of dips for the graphene-based DNA sequencing device. , 2011, Physical chemistry chemical physics : PCCP.

[64]  M. Taniguchi,et al.  Single-molecule sensing electrode embedded in-plane nanopore , 2011, Scientific reports.

[65]  C. Kaun,et al.  Recognizing nucleotides by cross-tunneling currents for DNA sequencing. , 2011, Physical review. E, Statistical, nonlinear, and soft matter physics.

[66]  Henny W. Zandbergen,et al.  Atomic-Scale Electron-Beam Sculpting of Defect-Free Graphene Nanostructures , 2011, Microscopy and Microanalysis.

[67]  G. N. Sastry,et al.  Quantum Mechanical Study of Physisorption of Nucleobases on Carbon Materials: Graphene versus Carbon Nanotubes , 2011 .

[68]  张华,et al.  A biosensor based on graphene nanoribbon with nanopores: a first-principles devices-design , 2011 .

[69]  H. Postma,et al.  Competing Interactions in DNA Assembly on Graphene , 2011, PloS one.

[70]  Kwang S. Kim,et al.  Fast DNA sequencing with a graphene-based nanochannel device. , 2011, Nature nanotechnology.

[71]  M. Pumera,et al.  Graphene platform for hairpin-DNA-based impedimetric genosensing. , 2011, ACS nano.

[72]  C. Dekker,et al.  Atomic-scale electron-beam sculpting of near-defect-free graphene nanostructures. , 2011, Nano letters.

[73]  X. Jia,et al.  Graphene edges: a review of their fabrication and characterization. , 2011, Nanoscale.

[74]  Rajeev Ahuja,et al.  Transverse conductance of DNA nucleotides in a graphene nanogap from first principles. , 2010, Nano letters.

[75]  David W. McComb,et al.  DNA Tunneling Detector Embedded in a Nanopore , 2010, Nano letters.

[76]  Jin He,et al.  Identifying single bases in a DNA oligomer with electron tunnelling. , 2010, Nature nanotechnology.

[77]  Shibing Long,et al.  Enhanced DNA Sequencing Performance Through Edge‐Hydrogenation of Graphene Electrodes , 2010, 1012.0031.

[78]  Cees Dekker,et al.  Influence of electrolyte composition on liquid-gated carbon nanotube and graphene transistors. , 2010, Journal of the American Chemical Society.

[79]  K. Loh,et al.  A graphene oxide-organic dye ionic complex with DNA-sensing and optical-limiting properties. , 2010, Angewandte Chemie.

[80]  Neil Peterman,et al.  DNA translocation through graphene nanopores. , 2010, Nano letters.

[81]  A. Seitsonen,et al.  Atomically precise bottom-up fabrication of graphene nanoribbons , 2010, Nature.

[82]  D. Branton,et al.  Graphene as a sub-nanometer trans-electrode membrane , 2010, Nature.

[83]  M. Ozkan,et al.  Gating of single-layer graphene with single-stranded deoxyribonucleic acids. , 2010, Small.

[84]  Peng Chen,et al.  Electrical Detection of DNA Hybridization with Single‐Base Specificity Using Transistors Based on CVD‐Grown Graphene Sheets , 2010, Advanced materials.

[85]  M. Taniguchi,et al.  Identifying single nucleotides by tunnelling current. , 2010, Nature nanotechnology.

[86]  Bo Zhang,et al.  Detection of nucleic acids with graphene nanopores: ab initio characterization of a novel sequencing device. , 2010, Nano letters.

[87]  Chunhai Fan,et al.  A Graphene Nanoprobe for Rapid, Sensitive, and Multicolor Fluorescent DNA Analysis , 2010 .

[88]  Colin Nuckolls,et al.  Translocation of Single-Stranded DNA Through Single-Walled Carbon Nanotubes , 2010, Science.

[89]  T. Kawai,et al.  Partial sequencing of a single DNA molecule with a scanning tunnelling microscope. , 2009, Nature nanotechnology.

[90]  Huang-Hao Yang,et al.  A graphene platform for sensing biomolecules. , 2009, Angewandte Chemie.

[91]  W. Ansorge Next-generation DNA sequencing techniques. , 2009, New biotechnology.

[92]  A. Govindaraj,et al.  Binding of DNA nucleobases and nucleosides with graphene. , 2009, Chemphyschem : a European journal of chemical physics and physical chemistry.

[93]  N. M. R. Peres,et al.  Tight-binding approach to uniaxial strain in graphene , 2008, 0811.4396.

[94]  H. Postma,et al.  Rapid sequencing of individual DNA molecules in graphene nanogaps. , 2008, Nano letters.

[95]  Hanlee P. Ji,et al.  Next-generation DNA sequencing , 2008, Nature Biotechnology.

[96]  J. Kysar,et al.  Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene , 2008, Science.

[97]  S. Grimme,et al.  Structures and interaction energies of stacked graphene-nucleobase complexes. , 2008, Physical chemistry chemical physics : PCCP.

[98]  N. Peres,et al.  Fine Structure Constant Defines Visual Transparency of Graphene , 2008, Science.

[99]  C. N. Lau,et al.  Superior thermal conductivity of single-layer graphene. , 2008, Nano letters.

[100]  Cees Dekker,et al.  Identifying the mechanism of biosensing with carbon nanotube transistors. , 2008, Nano letters.

[101]  K. Novoselov,et al.  Giant intrinsic carrier mobilities in graphene and its bilayer. , 2007, Physical review letters.

[102]  R. Varadarajan,et al.  Binding of nucleobases with single-walled carbon nanotubes: Theory and experiment , 2007, 0709.3071.

[103]  M. Di Ventra,et al.  Influence of the environment and probes on rapid DNA sequencing via transverse electronic transport. , 2007, Biophysical journal.

[104]  R. Ahuja,et al.  Physisorption of nucleobases on graphene : Density-functional calculations , 2007, 0704.1316.

[105]  C. Dekker Solid-state nanopores. , 2007, Nature nanotechnology.

[106]  Andre K. Geim,et al.  The rise of graphene. , 2007, Nature materials.

[107]  K. Novoselov,et al.  Detection of individual gas molecules adsorbed on graphene. , 2006, Nature materials.

[108]  L. Brey,et al.  Electronic states of graphene nanoribbons studied with the Dirac equation , 2006, cond-mat/0603107.

[109]  S. Murakami,et al.  Gauge Field for Edge State in Graphene , 2006, cond-mat/0602647.

[110]  M. Ezawa Peculiar width dependence of the electronic properties of carbon nanoribbons , 2006, cond-mat/0602480.

[111]  R. Compton,et al.  Nanotrench arrays reveal insight into graphite electrochemistry. , 2005, Angewandte Chemie.

[112]  K. Novoselov,et al.  Two-dimensional atomic crystals. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[113]  Andre K. Geim,et al.  Electric Field Effect in Atomically Thin Carbon Films , 2004, Science.

[114]  A. M. Brett,et al.  Atomic Force Microscopy of DNA Immobilized onto a Highly Oriented Pyrolytic Graphite Electrode Surface , 2003 .

[115]  S. Turner,et al.  Zero-Mode Waveguides for Single-Molecule Analysis at High Concentrations , 2003, Science.

[116]  M. Sigrist,et al.  Electronic and magnetic properties of nanographite ribbons , 1998, cond-mat/9809260.

[117]  Fujita,et al.  Edge state in graphene ribbons: Nanometer size effect and edge shape dependence. , 1996, Physical review. B, Condensed matter.

[118]  D. Branton,et al.  Characterization of individual polynucleotide molecules using a membrane channel. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[119]  K. Kusakabe,et al.  Peculiar Localized State at Zigzag Graphite Edge , 1996 .

[120]  O. Krasilnikov,et al.  A simple method for the determination of the pore radius of ion channels in planar lipid bilayer membranes. , 1992, FEMS microbiology immunology.

[121]  M. Colombini Pore size and properties of channels from mitochondria isolated fromNeurospora crassa , 1980, The Journal of Membrane Biology.

[122]  F. Sanger,et al.  DNA sequencing with chain-terminating inhibitors. , 1977, Proceedings of the National Academy of Sciences of the United States of America.

[123]  B. Sakmann,et al.  Single-channel currents recorded from membrane of denervated frog muscle fibres , 1976, Nature.

[124]  P. Wallace The Band Theory of Graphite , 1947 .

[125]  Lina Zhao,et al.  Nanopore-based DNA analysis via graphene electrodes , 2012 .

[126]  Paul R. Chalker,et al.  Thermal stability of neodymium aluminates high-κ dielectric deposited by liquid injection MOCVD using single-source heterometallic alkoxide precursors , 2012 .

[127]  Z. Siwy,et al.  Making nanopores from nanotubes. , 2010, Nature nanotechnology.

[128]  M. Metzker Sequencing technologies — the next generation , 2010, Nature Reviews Genetics.

[129]  O. Sankey,et al.  Recognition tunneling , 2010, Nanotechnology.

[130]  International Human Genome Sequencing Consortium Initial sequencing and analysis of the human genome , 2001, Nature.