Toward solar fuels: photocatalytic conversion of carbon dioxide to hydrocarbons.

The past several decades have seen a significant rise in atmospheric carbon dioxide levels resulting from the combustion of hydrocarbon fuels. A solar energy based technology to recycle carbon dioxide into readily transportable hydrocarbon fuel (i.e., a solar fuel) would help reduce atmospheric CO2 levels and partly fulfill energy demands within the present hydrocarbon based fuel infrastructure. We review the present status of carbon dioxide conversion techniques, with particular attention to a recently developed photocatalytic process to convert carbon dioxide and water vapor into hydrocarbon fuels using sunlight.

[1]  M. Auffhammer Hidden Costs of Energy: Unpriced Consequences of Energy Production and Use , 2011, Environmental Health Perspectives.

[2]  A. Spek,et al.  Electrocatalytic CO2 Conversion to Oxalate by a Copper Complex , 2010, Science.

[3]  John P. Baltrus,et al.  Visible Light Photoreduction of CO2 Using CdSe/Pt/TiO2 Heterostructured Catalysts , 2009 .

[4]  A. Slater Eating the Sun: How Plants Power the Planet , 2009 .

[5]  Craig A Grimes,et al.  Long vertically aligned titania nanotubes on transparent conducting oxide for highly efficient solar cells. , 2009, Nature nanotechnology.

[6]  Craig A. Grimes,et al.  TiO2 Nanotube Arrays: Synthesis, Properties, and Applications , 2009 .

[7]  G. Wallace,et al.  Electrocatalytic Reduction of Carbon Dioxide by Cobalt-Phthalocyanine-Incorporated Polypyrrole , 2009 .

[8]  S. Barnett,et al.  Syngas Production By Coelectrolysis of CO2/H2O: The Basis for a Renewable Energy Cycle , 2009 .

[9]  C. Pham‐Huu,et al.  Fe and Pt carbon nanotubes for the electrocatalytic conversion of carbon dioxide to oxygenates , 2009 .

[10]  Clifford P. Kubiak,et al.  Electrocatalytic and Homogeneous Approaches to Conversion of CO2 to Liquid Fuels , 2009 .

[11]  Siglinda Perathoner,et al.  Catalysis: Role and Challenges for a Sustainable Energy , 2009 .

[12]  T. Desai,et al.  Long-term small molecule and protein elution from TiO2 nanotubes. , 2009, Nano letters.

[13]  Tejal A Desai,et al.  The effect of TiO2 nanotubes on endothelial function and smooth muscle proliferation. , 2009, Biomaterials.

[14]  Craig A. Grimes,et al.  High-rate solar photocatalytic conversion of CO2 and water vapor to hydrocarbon fuels. , 2009, Nano letters.

[15]  Charles F. Harvey,et al.  The energy penalty of post-combustion CO2 capture & storage and its implications for retrofitting the U.S. installed base , 2009 .

[16]  G. Olah,et al.  Chemical recycling of carbon dioxide to methanol and dimethyl ether: from greenhouse gas to renewable, environmentally carbon neutral fuels and synthetic hydrocarbons. , 2009, The Journal of organic chemistry.

[17]  Wen-Yueh Yu,et al.  Pt/titania-nanotube: A potential catalyst for CO2 adsorption and hydrogenation , 2008 .

[18]  A. V. Emeline,et al.  Visible-Light-Active Titania Photocatalysts: The Case of N-Doped s—Properties and Some Fundamental Issues , 2008 .

[19]  B. Singh,et al.  Advancements in development and characterization of biodiesel: A review , 2008 .

[20]  John T. S. Irvine,et al.  Efficient Reduction of CO2 in a Solid Oxide Electrolyzer , 2008 .

[21]  Rattan Lal,et al.  Sequestration of atmospheric CO2 in global carbon pools , 2008 .

[22]  T. Desai,et al.  Fabrication of mechanically robust, large area, polycrystalline nanotubular/porous TiO2 membranes , 2008 .

[23]  J. Moulijn,et al.  Enabling Electrocatalytic Fischer–Tropsch Synthesis from Carbon Dioxide Over Copper-based Electrodes , 2008 .

[24]  Mukundan Thelakkat,et al.  Highly efficient solar cells using TiO(2) nanotube arrays sensitized with a donor-antenna dye. , 2008, Nano letters.

[25]  Andrew B. Bocarsly,et al.  Selective solar-driven reduction of CO2 to methanol using a catalyzed p-GaP based photoelectrochemical cell. , 2008, Journal of the American Chemical Society.

[26]  V. Masson‐Delmotte,et al.  Target atmospheric CO2: Where should humanity aim? , 2008, 0804.1126.

[27]  Craig A. Grimes,et al.  Appropriate strategies for determining the photoconversion efficiency of water photoelectrolysis cells : A review with examples using titania nanotube array photoanodes , 2008 .

[28]  Y. Chisti Biodiesel from microalgae beats bioethanol. , 2008, Trends in biotechnology.

[29]  Hung Ji Huang,et al.  Application of Optical-fiber Photoreactor for CO2 Photocatalytic Reduction , 2008 .

[30]  Hiroyuki Takeda,et al.  Development of an efficient photocatalytic system for CO2 reduction using rhenium(I) complexes based on mechanistic studies. , 2008, Journal of the American Chemical Society.

[31]  Carl M. Stoots,et al.  Idaho National Laboratory Experimental Research In High Temperature Electrolysis For Hydrogen And Syngas Production , 2008 .

[32]  C. Yuan,et al.  Photoreduction of carbon dioxide with H2 and H2O over TiO2 and ZrO2 in a circulated photocatalytic reactor , 2007 .

[33]  Somnath C. Roy,et al.  The effect of TiO2 nanotubes in the enhancement of blood clotting for the control of hemorrhage. , 2007, Biomaterials.

[34]  C. Grimes,et al.  High efficiency double heterojunction polymer photovoltaic cells using highly ordered TiO2 nanotube arrays , 2007 .

[35]  E. Akkaya,et al.  Dye sensitized CO2 reduction over pure and platinized TiO2 , 2007 .

[36]  Siglinda Perathoner,et al.  Electrocatalytic conversion of CO2 to long carbon-chain hydrocarbons , 2007 .

[37]  Y. Chisti Biodiesel from microalgae. , 2007, Biotechnology advances.

[38]  Ying Yu,et al.  Preparation of multi-walled carbon nanotube supported TiO2 and its photocatalytic activity in the reduction of CO2 with H2O , 2007 .

[39]  Narendra K. Gupta,et al.  Electrochemical reduction of CO2 to hydrocarbons to store renewable electrical energy and upgrade biogas , 2007 .

[40]  A. Munoz Semiconducting properties of self-organized TiO2 nanotubes , 2007 .

[41]  Craig A. Grimes,et al.  Highly-ordered TiO2 nanotube arrays up to 220 µm in length: use in water photoelectrolysis and dye-sensitized solar cells , 2007 .

[42]  Seng Sing Tan,et al.  Photosynthesis of hydrogen and methane as key components for clean energy system , 2007 .

[43]  M. Curran,et al.  A review of assessments conducted on bio-ethanol as a transportation fuel from a net energy, greenhouse gas, and environmental life cycle perspective , 2007 .

[44]  Anne C. Co,et al.  A review of the aqueous electrochemical reduction of CO2 to hydrocarbons at copper , 2006 .

[45]  Craig A. Grimes,et al.  Anodic Growth of Highly Ordered TiO2 Nanotube Arrays to 134 μm in Length , 2006 .

[46]  Chunshan Song Global challenges and strategies for control, conversion and utilization of CO2 for sustainable development involving energy, catalysis, adsorption and chemical processing , 2006 .

[47]  K. G. Ong,et al.  A Transcutaneous Hydrogen Sensor: From Design to Application , 2006 .

[48]  Craig A. Grimes,et al.  Backside illuminated dye-sensitized solar cells based on titania nanotube array electrodes , 2006 .

[49]  Craig A Grimes,et al.  Use of highly-ordered TiO(2) nanotube arrays in dye-sensitized solar cells. , 2006, Nano letters.

[50]  Ulrike Diebold,et al.  Influence of nitrogen doping on the defect formation and surface properties of TiO2 rutile and anatase. , 2006, Physical review letters.

[51]  N. Sasirekha,et al.  Photocatalytic performance of Ru doped anatase mounted on silica for reduction of carbon dioxide , 2006 .

[52]  Akira Murata,et al.  "Deactivation of copper electrode" in electrochemical reduction of CO2 , 2005 .

[53]  C. Grimes,et al.  Water-photolysis properties of micron-length highly-ordered titania nanotube-arrays. , 2005, Journal of nanoscience and nanotechnology.

[54]  Bobak Gholamkhass,et al.  Architecture of supramolecular metal complexes for photocatalytic CO2 reduction: ruthenium-rhenium bi- and tetranuclear complexes. , 2005, Inorganic chemistry.

[55]  C. Kubiak,et al.  Dinuclear Nickel Complexes as Catalysts for Electrochemical Reduction of Carbon Dioxide , 2005 .

[56]  Craig A Grimes,et al.  Enhanced photocleavage of water using titania nanotube arrays. , 2005, Nano letters.

[57]  K. Ogura,et al.  Photoelectrochemical Behavior of Electrodeposited CuO and Cu2 O Thin Films on Conducting Substrates , 2004 .

[58]  C. Grimes,et al.  A titania nanotube-array room-temperature sensor for selective detection of hydrogen at low concentrations. , 2004, Journal of nanoscience and nanotechnology.

[59]  M. Łukaszewski,et al.  Influence of adsorbed carbon dioxide on hydrogen electrosorption in palladium–platinum–rhodium alloys , 2004 .

[60]  Claes-Göran Granqvist,et al.  Photoelectrochemical Study of Nitrogen-Doped Titanium Dioxide for Water Oxidation , 2004 .

[61]  H. Frei,et al.  CO2 splitting by H2O to CO and O2 under UV light in TiMCM-41 silicate sieve , 2004 .

[62]  George J. Simandl,et al.  Geological, Ocean, and Mineral CO 2 Sequestration Options: A Technical Review , 2004 .

[63]  Craig A. Grimes,et al.  A room-temperature TiO2-nanotube hydrogen sensor able to self-clean photoactively from environmental contamination , 2004 .

[64]  D. Sauerbeck CO2 emissions and C sequestration by agriculture – perspectives and limitations , 2001, Nutrient Cycling in Agroecosystems.

[65]  K. Gao,et al.  Use of macroalgae for marine biomass production and CO2 remediation: a review , 1994, Journal of Applied Phycology.

[66]  S. Carpenter,et al.  Catastrophic regime shifts in ecosystems: linking theory to observation , 2003 .

[67]  J. White,et al.  Photochemical charge transfer and trapping at the interface between an organic adlayer and an oxide semiconductor. , 2003, Journal of the American Chemical Society.

[68]  Eric Croiset,et al.  Techno-economic study of CO2 capture from an existing coal-fired power plant: MEA scrubbing vs. O2/CO2 recycle combustion , 2003 .

[69]  Craig A. Grimes,et al.  Hydrogen sensing using titania nanotubes , 2003 .

[70]  C. M. White,et al.  Separation and Capture of CO2 from Large Stationary Sources and Sequestration in Geological Formations , 2003, Journal of the Air & Waste Management Association.

[71]  Julius M. Mwabora,et al.  Photoelectrochemical and Optical Properties of Nitrogen Doped Titanium Dioxide Films Prepared by Reactive DC Magnetron Sputtering , 2003 .

[72]  Fatih Köleli,et al.  Electrochemical impedance spectroscopic investigation of CO2 reduction on polyaniline in methanol , 2003 .

[73]  G. Guan,et al.  Reduction of carbon dioxide with water under concentrated sunlight using photocatalyst combined with Fe-based catalyst , 2003 .

[74]  G. Centi,et al.  Reduction of greenhouse gas emissions by catalytic processes , 2003 .

[75]  Edward S Rubin,et al.  A technical, economic, and environmental assessment of amine-based CO2 capture technology for power plant greenhouse gas control. , 2002, Environmental science & technology.

[76]  Y. Momose,et al.  Electrochemical reduction of CO2 at copper electrodes and its relationship to the metal surface characteristics , 2002 .

[77]  Makoto Ogawa,et al.  Photocatalytic Reduction of CO2 with H2O on Ti-Containing Porous Silica Thin Film Photocatalysts , 2002 .

[78]  Reed J. Jensen,et al.  Direct Solar Reduction of CO2 to Fuel: First Prototype Results , 2002 .

[79]  H. Habazaki,et al.  Advanced materials for global carbon dioxide recycling , 2001 .

[80]  J. Sabroux,et al.  Removing CO2 from Lake Nyos in Cameroon , 2001, Science.

[81]  A. Aldaz,et al.  Electrochemical approaches to alleviation of the problem of carbon dioxide accumulation , 2001 .

[82]  Yoshio Hori,et al.  Electrochemical Reduction of Carbon Dioxide at a Platinum Electrode in Acetonitrile‐Water Mixtures , 2000 .

[83]  H. Frei,et al.  Mechanistic Study of CO2 Photoreduction in Ti Silicalite Molecular Sieve by FT-IR Spectroscopy , 2000 .

[84]  H. Abruña,et al.  Electrocatalytic reduction of carbon dioxide mediated by transition metal complexes with terdentate ligands derived from diacetylpyridine , 2000 .

[85]  K. Ohta,et al.  Electrochemical Reduction of Carbon Dioxide at Cu Electrode under Ultrasonic Irradiation , 2000 .

[86]  Nobutaka Endo,et al.  Electrochemical Reduction of CO 2 with a Functional Gas‐Diffusion Electrode in Aqueous Solutions With and Without Propylene Carbonate , 1999 .

[87]  M. Hanna,et al.  Biodiesel production : a review , 1999 .

[88]  K. Ohta,et al.  Electrochemical reduction of carbon dioxide to ethylene with high Faradaic efficiency at a Cu electrode in CsOH/methanol , 1999 .

[89]  K. Ohta,et al.  Electrochemical reduction of carbon dioxide on copper in methanol with various potassium supporting electrolytes at low temperature , 1999 .

[90]  K. Kudo,et al.  Selective formation of methane in reduction of CO2 with water by Raney alloy catalyst , 1999 .

[91]  Etsuko Fujita,et al.  Photochemical carbon dioxide reduction with metal complexes , 1999 .

[92]  K. Ohta,et al.  Electrochemical Reduction of Carbon Dioxide on an Indium Wire in a KOH/Methanol-Based Electrolyte at Ambient Temperature and Pressure , 1999 .

[93]  Meyer Steinberg,et al.  Greenhouse gas carbon dioxide mitigation: Science and technology , 1998 .

[94]  Y. Wada,et al.  Surface Characteristics of ZnS Nanocrystallites Relating to Their Photocatalysis for CO2 Reduction1 , 1998 .

[95]  Laurence M. Peter,et al.  Dynamic Response of Dye-Sensitized Nanocrystalline Solar Cells: Characterization by Intensity-Modulated Photocurrent Spectroscopy , 1997 .

[96]  D. Lowy,et al.  Electrochemical reduction of carbon dioxide on flat metallic cathodes , 1997 .

[97]  Masami Shibata,et al.  High performance RuPd catalysts for CO2 reduction at gas-diffusion electrodes , 1997 .

[98]  Yuichi Ichihashi,et al.  Photocatalytic Reduction of CO2 with H2O on Titanium Oxides Anchored within Micropores of Zeolites: Effects of the Structure of the Active Sites and the Addition of Pt , 1997 .

[99]  K. Hara,et al.  Large Current Density CO2 Reduction under High Pressure Using Gas Diffusion Electrodes. , 1997 .

[100]  J. Savéant,et al.  Homogeneous Catalysis of Electrochemical Hydrogen Evolution by Iron(0) Porphyrins , 1996 .

[101]  A. Fujishima,et al.  Electrochemical reduction of CO2 with high current density in a CO2 + methanol medium at various metal electrodes , 1996 .

[102]  Shinichi Ichikawa,et al.  Hydrogen production from water and conversion of carbon dioxide to useful chemicals by room temperature photoelectrocatalysis , 1996 .

[103]  Kaname Ito,et al.  Kinetics of Electrochemical Reduction of Carbon Dioxide on a Gold Electrode in Phosphate Buffer Solutions , 1995 .

[104]  Akihiko Kudo,et al.  Electrochemical reduction of carbon dioxide under high pressure on various electrodes in an aqueous electrolyte , 1995 .

[105]  Akira Naitoh,et al.  Electrochemical reduction of CO2 in methanol at −30°C , 1995 .

[106]  A. Fujishima,et al.  Electrochemical Reduction of CO2 with High Current Density in a CO2-Methanol Medium , 1995 .

[107]  J. Yates,et al.  Photocatalysis on TiO2 Surfaces: Principles, Mechanisms, and Selected Results , 1995 .

[108]  Y. Matsumoto,et al.  Photocatalytic reduction of carbon dioxide on p-type CaFe2O4 powder , 1994 .

[109]  K. Ohta,et al.  Photocatalytic reduction of carbon dioxide to hydrocarbon using copper-loaded titanium dioxide , 1994 .

[110]  Hiroshi Inoue,et al.  Photochemical Reduction of Carbon Dioxide to Methanol Using ZnS Microcrystallite as a Photocatalyst in the Presence of Methanol Dehydrogenase , 1994 .

[111]  H. Arakawa,et al.  Photocatalytic Decomposition of Water and Photocatalytic Reduction of Carbon Dioxide Over ZrO2 Catalyst , 1993 .

[112]  M. Anpo,et al.  Photocatalytic reduction of CO2 on anchored titanium oxide catalysts , 1992 .

[113]  R. Schlögl,et al.  Methanation of carbon dioxide over Ru/Titania at room temperature: explorations for a photoassisted catalytic reaction , 1991 .

[114]  Kaname Ito,et al.  Electrochemical Reduction of Carbon Dioxide at Various Metal Electrodes in Aqueous Potassium Hydrogen Carbonate Solution. , 1991 .

[115]  M. Calvin,et al.  Photochemical reduction of carbon dioxide using nickel tetraazamacrocycles , 1990 .

[116]  J F Reynolds,et al.  Biological Feedbacks in Global Desertification , 1990, Science.

[117]  Y. Hori,et al.  Formation of hydrocarbons in the electrochemical reduction of carbon dioxide at a copper electrode in aqueous solution , 1990 .

[118]  Kaname Ito,et al.  Potential Dependencies of the Products on Electrochemical Reduction of Carbon Dioxide at a Copper Electrode , 1989 .

[119]  A. Sammells,et al.  Photoelectrochemical Carbon Dioxide Reduction to Hydrocarbons at Ambient Temperature and Pressure , 1988 .

[120]  Y. Hori,et al.  Enhanced Formation of Ethylene and Alcohols at Ambient Temperature and Pressure in Electrochemical Reduction of Carbon Dioxide at a Copper Electrode. , 1988 .

[121]  Brian R. Eggins,et al.  Formation of two-carbon acids from carbon dioxide by photoreduction on cadmium sulphide , 1988 .

[122]  M. Graetzel,et al.  Methanation and Photo-Methanation of Carbon Dioxide at Room Temperature and Atmospheric Pressure. , 1987 .

[123]  C. Kubiak,et al.  Carbon Dioxide Chemistry and Electrochemistry of a Binuclear “Cradle” Complex of Ni(0), Ni2(μ-CNMe)(CNMe)2(PPh2CH2PPh2)2. , 1987 .

[124]  Akira Murata,et al.  PRODUCTION OF METHANE AND ETHYLENE IN ELECTROCHEMICAL REDUCTION OF CARBON DIOXIDE AT COPPER ELECTRODE IN AQUEOUS HYDROGENCARBONATE SOLUTION , 1986 .

[125]  Katsuhei Kikuchi,et al.  Production of CO and CH4 in electrochemical reduction of CO2 at metal electrodes in aqueous hydrogencarbonate solution. , 1985 .

[126]  S. Slater,et al.  Electrochemical reduction of carbon dioxide catalyzed by Rh(diphos)2Cl , 1984 .

[127]  Charles M. Lieber,et al.  Catalytic reduction of carbon dioxide at carbon electrodes modified with cobalt phthalocyanine , 1984 .

[128]  Katsumi Tanaka,et al.  Adsorption of carbon dioxide on titanium dioxide and platinum/titanium dioxide studied by x-ray photoelectron spectroscopy and Auger electron spectroscopy , 1984 .

[129]  P. Salvador,et al.  Hole diffusion length in n‐TiO2 single crystals and sintered electrodes: Photoelectrochemical determination and comparative analysis , 1984 .

[130]  J. Lehn,et al.  Electrocatalytic reduction of carbon dioxide mediated by Re(bipy)(CO)3Cl (bipy = 2,2′-bipyridine) , 1984 .

[131]  K. W. Frese,et al.  Reduction of Carbon Dioxide to Methanol on n ‐ and p ‐ GaAs and p ‐ InP . Effect of Crystal Face, Electrolyte and Current Density , 1983 .

[132]  B. Aurian‐Blajeni,et al.  Electrochemical measurement on the photoelectrochemical reduction of aqueous carbon dioxide on p-Gallium phosphide and p-Gallium arsenide semiconductor electrodes , 1983 .

[133]  B. Aurian‐Blajeni,et al.  Photochemical solar collector for the photoassisted reduction of aqueous carbon dioxide , 1983 .

[134]  F. A. Benko,et al.  A photoelectrochemical determination of the position of the conduction and valence band edges of p‐type CuO , 1982 .

[135]  J. Lehn,et al.  Photochemical generation of carbon monoxide and hydrogen by reduction of carbon dioxide and water under visible light irradiation. , 1982, Proceedings of the National Academy of Sciences of the United States of America.

[136]  R. Eisenberg,et al.  Electrocatalytic reduction of carbon dioxide by using macrocycles of nickel and cobalt , 1980 .

[137]  L. Martin,et al.  Use of solar energy to reduce carbon dioxide , 1980 .

[138]  P. Robinson,et al.  Thermochemical splitting of water and carbon dioxide with cerium compounds , 1980 .

[139]  A. Fujishima,et al.  Photoelectrocatalytic reduction of carbon dioxide in aqueous suspensions of semiconductor powders , 1979, Nature.

[140]  M. Halmann,et al.  Photoelectrochemical reduction of aqueous carbon dioxide on p-type gallium phosphide in liquid junction solar cells , 1978, Nature.

[141]  I. Zelitch Improving the efficiency of photosynthesis. , 1975, Science.

[142]  S. Dorner,et al.  Hydrogen production from decomposition of water by means of nuclear reactor heat , 1975 .

[143]  M. Ichikawa,et al.  Electrocatalysis by metal phthalocyanines in the reduction of carbon dioxide , 1974 .

[144]  Pierre Van Rysselberghe,et al.  Reduction of Carbon Dioxide on Mercury Cathodes , 1954 .

[145]  R. R. White,et al.  Synthesis of Methane by Hydrogenation of Carbon Monoxide in a Tubular Reactor. , 1953 .