Statistics and Parameterizations of the Effect of Turbulence on the Geometric Collision Kernel of Cloud Droplets

Abstract Collision statistics of cloud droplets in turbulent flow have been calculated for 12 droplet size combinations in four flow fields with levels of the eddy dissipation rate of turbulent kinetic energy ranging from 95 to 1535 cm2 s−3. The flow fields were generated by using a direct numerical simulation technique and large numbers of droplets were explicitly tracked through the flow field for each experiment. The effect of turbulence on the collision kernel increases with both increasing radius ratio and eddy dissipation rate. These increases range from fairly modest values to almost 10 times the gravitational geometric collision kernel. The two physical processes responsible for these increases are the radial relative velocities and the preferential concentration or clustering of the droplets. The radial relative velocities increased by up to 3 times the corresponding gravitational value and the greatest increase in the clustering, as measured by the radial distribution function, is 4.5 times the ...

[1]  Robert McDougall Kerr,et al.  Higher-order derivative correlations and the alignment of small-scale structures in isotropic numerical turbulence , 1983, Journal of Fluid Mechanics.

[2]  P. Saffman,et al.  On the collision of drops in turbulent clouds , 1956, Journal of Fluid Mechanics.

[3]  John R. Fessler,et al.  Preferential concentration of particles by turbulence , 1991 .

[4]  Alexander Khain,et al.  Collisions of small drops in a turbulent flow , 1999 .

[5]  J. Marshall,et al.  Turbulence in clouds as a factor in precipitation , 1954 .

[6]  Steven A. Orszag,et al.  Intermittent vortex structures in homogeneous isotropic turbulence , 1990, Nature.

[7]  J. Riley,et al.  Equation of motion for a small rigid sphere in a nonuniform flow , 1983 .

[8]  Paul A. Vaillancourt,et al.  Collision Rates of Cloud Droplets in Turbulent Flow. , 2005 .

[9]  Alexander Khain,et al.  Collisions of Small Drops in a Turbulent Flow. Part I: Collision Efficiency. Problem Formulation and Preliminary Results , 1999 .

[10]  A. Wexler,et al.  On the collision rate of small particles in isotropic turbulence. II. Finite inertia case , 1998 .

[11]  A. Wexler,et al.  STATISTICAL MECHANICAL DESCRIPTIONS OF TURBULENT COAGULATION , 1998 .

[12]  Lance R. Collins,et al.  Numerical Considerations in Simulating a Turbulent Suspension of Finite-Volume Particles , 1996 .

[13]  Martin R. Maxey,et al.  Gravitational Settling of Aerosol Particles in Randomly Oriented Cellular Flow Fields , 1986 .

[14]  L. Collins,et al.  Collision statistics in an isotropic particle-laden turbulent suspension. Part 1. Direct numerical simulations , 1997, Journal of Fluid Mechanics.

[15]  De Almeida,et al.  The Collisional Problem of Cloud Droplets Moving in a Turbulent Environment–Part II: Turbulent Collision Efficiencies , 1979 .

[16]  Harry T. Ochs,et al.  Warm-Rain Initiation: An Overview of Microphysical Mechanisms. , 1993 .

[17]  Eric D. Siggia,et al.  Numerical study of small-scale intermittency in three-dimensional turbulence , 1981, Journal of Fluid Mechanics.

[18]  K. Squires,et al.  Particle response and turbulence modification in isotropic turbulence , 1990 .

[19]  L. Schiller Uber die Grundlegenden Berechnungen bei der Schwerkraftaufbereitung , 1933 .

[20]  J. Banavar,et al.  Computer Simulation of Liquids , 1988 .

[21]  K. Squires,et al.  Preferential concentration of particles by turbulence , 1991 .

[22]  Lance R. Collins,et al.  Clustering of aerosol particles in isotropic turbulence , 2005, Journal of Fluid Mechanics.

[23]  Shankar Mahalingam,et al.  Deterministic forcing of homogeneous, isotropic turbulence , 1994 .

[24]  P. R. Jonas,et al.  Turbulence and cloud microphysics , 1996 .

[25]  Lance R. Collins,et al.  Effect of preferential concentration on turbulent collision rates , 2000 .

[26]  M. Maxey,et al.  Settling velocity and concentration distribution of heavy particles in homogeneous isotropic turbulence , 1993, Journal of Fluid Mechanics.

[27]  Wojciech W. Grabowski,et al.  Microscopic approach to cloud droplet growth by condensation , 2001 .

[28]  A. Wexler,et al.  Modelling turbulent collision of bidisperse inertial particles , 2001, Journal of Fluid Mechanics.

[29]  S. Pope,et al.  Lagrangian statistics from direct numerical simulations of isotropic turbulence , 1989, Journal of Fluid Mechanics.

[30]  M. Lesieur,et al.  Coherent structures in rotating three-dimensional turbulence , 1994, Journal of Fluid Mechanics.

[31]  Wojciech W. Grabowski,et al.  Theoretical Formulation of Collision Rate and Collision Efficiency of Hydrodynamically Interacting Cloud Droplets in Turbulent Atmosphere , 2005 .

[32]  S. Elghobashi,et al.  On the two-way interaction between homogeneous turbulence and dispersed solid particles. I: Turbulence modification , 1993 .

[33]  H. Leighton,et al.  The Effect of Turbulence on the Collision Rates of Small Cloud Drops , 1996 .

[34]  Lian-Ping Wang,et al.  Reconciling the cylindrical formulation with the spherical formulation in the kinematic descriptions of collision kernel , 2005 .

[35]  Anthony S. Wexler,et al.  Droplets to Drops by Turbulent Coagulation , 2005 .

[36]  R. Lawson,et al.  Relative Dispersion of Ice Crystals in Seeded Cumuli , 1993 .

[37]  Wojciech W. Grabowski,et al.  Probability distributions of angle of approach and relative velocity for colliding droplets in a turbulent flow , 2006 .

[38]  Lance R. Collins,et al.  Reynolds number scaling of particle clustering in turbulent aerosols , 2004 .

[39]  Paul A. Vaillancourt,et al.  Microscopic approach to cloud droplet growth by condensation , 1998 .

[40]  A. Blyth,et al.  Entrainment in Cumulus Clouds , 1993 .

[41]  A. Wexler,et al.  Statistical mechanical description and modelling of turbulent collision of inertial particles , 1998, Journal of Fluid Mechanics.