Linear Multistep Methods for Integrating Reversible Differential Equations
暂无分享,去创建一个
[1] M. A. López-Marcos,et al. Variable step implementation of geometric integrators , 1998 .
[2] S. Mikkola. Practical Symplectic Methods with Time Transformation for the Few-Body Problem , 1997 .
[3] Jerrold E. Marsden,et al. Integration Algorithms and Classical Mechanics , 1996 .
[4] P. Hut,et al. Building a better leapfrog , 1995 .
[5] G. R. W. Quispel,et al. Chaos and time-reversal symmetry. Order and chaos in reversible dynamical systems , 1992 .
[6] S. Tremaine,et al. Symmetric Multistep Methods for the Numerical Integration of Planetary Orbits , 1990 .
[7] C. Scovel,et al. Symplectic integration of Hamiltonian systems , 1990 .
[8] K. Feng. Difference schemes for Hamiltonian formalism and symplectic geometry , 1986 .
[9] J. Lambert,et al. Symmetric Multistip Methods for Periodic Initial Value Problems , 1976 .
[10] D. Saari,et al. Stable and Random Motions in Dynamical Systems , 1975 .
[11] J. Lambert. Computational Methods in Ordinary Differential Equations , 1973 .
[12] J. M. Watt. Numerical Initial Value Problems in Ordinary Differential Equations , 1972 .
[13] P. Henrici. Discrete Variable Methods in Ordinary Differential Equations , 1962 .
[14] W. Gautschi. Numerical integration of ordinary differential equations based on trigonometric polynomials , 1961 .
[15] B. Cano,et al. Error growth in the numerical integration of periodic orbits by multistep methods, with application to reversible systems , 1998 .
[16] Hiroaki Umehara,et al. Proceedings of the 30th symposium on celestial mechanics , 1998 .
[17] Benedict J. Leimkuhler,et al. The Adaptive Verlet Method , 1997, SIAM J. Sci. Comput..
[18] J. M. Sanz-Serna,et al. Numerical Hamiltonian Problems , 1994 .
[19] R. Z. Sagdeev,et al. Nonlinear and Turbulent Processes in Physics , 1984 .
[20] J. Wheeler,et al. The Physics of Time Asymmetry , 1974 .
[21] M. A. Wolfe. A first course in numerical analysis , 1972 .
[22] R W Hockney,et al. Computer Simulation Using Particles , 1966 .
[23] Physics Reports , 2022 .