Divisible Arcs, Divisible Codes, and the Extension Problem for Arcs and Codes

In an earlier paper we developed a unified approach to the extendability problem for arcs in PG(k - 1, q) and, equivalently, for linear codes over finite fields. We defined a special class of arcs called (t mod q)-arcs and proved that the extendabilty of a given arc depends on the structure of a special dual arc, which turns out to be a (t mod q)-arc. In this paper, we investigate the general structure of (t mod q)-arcs. We prove that every such arc is a sum of complements of hyperplanes. Furthermore, we characterize such arcs for small values of t, which in the case t = 2 gives us an alternative proof of the theorem by Maruta on the extendability of codes. This result is geometrically equivalent to the statement that every 2-quasidivisible arc in PG(k - 1, q), q ≥ 5, q odd, is extendable. Finally, we present an application of our approach to the extendability problem for caps in PG(3, q).

[1]  Ray Hill,et al.  An Extension Theorem for Linear Codes , 1999, Des. Codes Cryptogr..

[2]  N. Hamada,et al.  The rank of the incidence matrix of points and $d$-flats in finite geometries , 1968 .

[3]  Tatsuya Maruta A new extension theorem for linear codes , 2004, Finite Fields Their Appl..

[4]  K.J.C. Smith,et al.  On the p-rank of the incidence matrix of points and hyperplanes in a finite projective geometry , 1969 .

[5]  Olga Polverino Small Blocking Sets in PG(2, p3) , 2000 .

[6]  F. Jessie MacWilliams,et al.  On the p-Rank of the Design Matrix of a Difference Set , 1968, Inf. Control..

[7]  Leo Storme,et al.  On the extendability of quasidivisible Griesmer arcs , 2016, Des. Codes Cryptogr..

[8]  R. Hill,et al.  Extensions of linear codes , 1995, Proceedings of 1995 IEEE International Symposium on Information Theory.

[9]  A. Bruen,et al.  Baer subplanes and blocking sets , 1970 .

[10]  A. Blokhuis,et al.  Some p-Ranks Related to Orthogonal Spaces , 1995 .

[11]  James H. Griesmer,et al.  A Bound for Error-Correcting Codes , 1960, IBM J. Res. Dev..

[12]  On the Extendability of Linear Codes , 2001 .

[13]  James W. P. Hirschfeld,et al.  The dimension of projective geometry codes , 1992, Discret. Math..

[14]  Werner Heise,et al.  Informations- und Codierungstheorie - mathematische Grundlagen der Daten-Kompression und -Sicherung in diskreten Kommunikationssystemen (3. Aufl.) , 1983 .

[15]  Jean-Marie Goethals,et al.  On a class of majority-logic decodable cyclic codes , 1968, IEEE Trans. Inf. Theory.

[16]  J. Hirschfeld Projective Geometries Over Finite Fields , 1980 .

[17]  Peter Vandendriessche,et al.  A study of (xvt, xvt-1)-minihypers in PG(t, q) , 2012, J. Comb. Theory, Ser. A.

[18]  Tatsuya Maruta,et al.  An extension theorem for [n, k, d]d codes with gcd(d, q)=2 , 2010, Australas. J Comb..

[19]  I. Landjev The Geometric Approach to Linear Codes , 2001 .

[20]  Ray Hill,et al.  On (q2 + q + 2, q + 2)-arcs in the Projective Plane PG(2, q) , 2001, Des. Codes Cryptogr..

[21]  Tatsuya Maruta Extendability of linear codes over GF(q) with minimum distance d, gcd(d, q)=1 , 2003, Discret. Math..

[22]  Werner Heise,et al.  Informations- und Codierungstheorie , 1983 .

[23]  J. Hirschfeld Finite projective spaces of three dimensions , 1986 .

[24]  T. Maruta Extension theorems for linear codes over finite fields , 2011 .

[25]  F. MacWilliams,et al.  The Theory of Error-Correcting Codes , 1977 .