Pairing properties of realistic effective interactions

We investigate the pairing properties of an effective shell-model interaction defined within a model space outside 132 Sn and derived by means of perturbation theory from the CD-Bonn free nucleon-nucleon potential. It turns out that the neutron pairing component of the effective interaction is significantly weaker than the proton one, which accounts for the large pairing gap difference observed in the two-valence identical particle nuclei 134 Sn and 134 Te. The role of the contribution arising from one particle-one hole excitations in determining the pairing force is discussed and its microscopic structure is also analyzed in terms of the multipole decomposition.

[1]  L. Coraggio,et al.  Evolution of single-particle states beyond $^{132}$Sn , 2013, 1301.5191.

[2]  M. Baldo,et al.  Microscopic Origin of Pairing , 2012, 1206.2453.

[3]  E. Vigezzi,et al.  Medium Polarization Effects on the Superfluidity of Finite Nuclei and of the Inner Crust of Neutron Stars , 2013 .

[4]  T. Kuo,et al.  Pairing and realistic shell-model interactions , 2012, 1211.4758.

[5]  J. Rissanen,et al.  Precision mass measurements beyond 132Sn: anomalous behavior of odd-even staggering of binding energies. , 2012, Physical review letters.

[6]  T. Lesinski,et al.  Chiral three-nucleon forces and pairing in nuclei , 2011, 1104.2955.

[7]  C. -. Yu,et al.  One-phonon isovector 2+1,MS state in the neutron rich nucleus 132Te , 2011 .

[8]  L. Coraggio,et al.  Shell-model study of exotic Sn isotopes with a realistic effective interaction , 2010, 1010.4194.

[9]  N. Itaco,et al.  Shell-model interpretation of high-spin states in I 134 , 2009, 1001.3501.

[10]  L. Coraggio,et al.  Similarity of nuclear structure in the 132Sn and 208Pb regions: Proton-neutron multiplets , 2009, 0909.5348.

[11]  H. Hergert,et al.  Pairing in the framework of the unitary correlation operator method (UCOM): Hartree-Fock-Bogoliubov calculations , 2009, 0902.3933.

[12]  T. Lesinski,et al.  Non-empirical pairing energy density functional , 2008, 0809.2895.

[13]  T. Kuo,et al.  Shell-model calculations and realistic effective interactions , 2008, 0809.2144.

[14]  K. Blaum,et al.  Restoration of the N=82 shell gap from direct mass measurements of Sn-132,Sn-134 , 2008 .

[15]  M. Hjorth-Jensen,et al.  Pairing in Nuclear Systems: From Neutron Stars to Finite Nuclei , 2002, nucl-th/0210033.

[16]  S. Bogner,et al.  Low momentum nucleon-nucleon potential and shell model effective interactions , 1999, nucl-th/0108040.

[17]  R. Machleidt The High precision, charge dependent Bonn nucleon-nucleon potential (CD-Bonn) , 2000, nucl-th/0006014.

[18]  T. Kuo,et al.  Projected quasi-particle calculations of 119Sn, 121Sn, and 123Sn using realistic interactions , 1996 .

[19]  T. Kuo,et al.  Folded diagrams and 1s-Od effective interactions derived from Reid and Paris nucleon-nucleon potentials , 1983 .

[20]  Kenji Suzuki,et al.  Convergent Theory for Effective Interaction in Nuclei , 1980 .

[21]  T. Kuo,et al.  Two-particle states in 210Pb, 210Bi and 210Po with realistic forces , 1972 .

[22]  G. Bertsch Role of core polarization in two-body interaction , 1965 .

[23]  A. Kallio,et al.  An application of the separation method in shell-model calculation , 1964 .