Insights into the Difference Between Rotaxane and Pseudorotaxane.

Rotaxane and pseudorotaxane are two types of mechanically interlocked molecular architectures, and there is a clear topological difference and boundary between them. In this work, a "suggested [2]rotaxane 1⊂α-CD" was constructed based on axle molecule 1 bearing two terminal ferrocene groups and a wheel component α-cyclodextrin (α-CD), but the result obtained indicated that the ferrocene group cannot prevent α-CD dethreading under UV irradiation. That is, 1⊂α-CD is just a pseudo[2]rotaxane. Furthermore, the two ferrocene groups in 1⊂α-CD were encapsulated by two cucurbit[7]uril (CB[7]) units to obtain a heteropseudo[4]rotaxane 1⊂α-CD⋅2CB[7]. This heteropseudo[4]rotaxane displayed high stability towards harsh temperatures and the isomerization of azobenzene in 1, so it can be regarded as a [2]rotaxane. In this [2]rotaxane, the stoppers are not the bulky groups covalently bonded to the axle, but the cyclic CB[7] units connected through noncovalent interactions.

[1]  D. Qu,et al.  Dynamic Self‐Assembly Encodes A Tri‐stable Au–TiO2 Photocatalyst , 2017, Advanced materials.

[2]  Zheng Meng,et al.  Directional Molecular Transportation Based on a Catalytic Stopper-Leaving Rotaxane System. , 2016, Journal of the American Chemical Society.

[3]  D. Qu,et al.  One-pot synthesis of a [c2]daisy-chain-containing hetero[4]rotaxane via a self-sorting strategy† †Electronic supplementary information (ESI) available: Full experimental procedures and characterization data for all compounds. See DOI: 10.1039/c5sc04844c Click here for additional data file. , 2016, Chemical science.

[4]  G. Narayanan,et al.  Fabrication and Characterization of Poly(ε-caprolactone)/α-Cyclodextrin Pseudorotaxane Nanofibers. , 2016, Biomacromolecules.

[5]  Feihe Huang,et al.  A pillar[6]arene-based [2]pseudorotaxane in solution and in the solid state and its photo-responsive self-assembly behavior in solution. , 2016, Chemical communications.

[6]  D. Qu,et al.  Dual-Mode Controlled Self-Assembly of TiO2 Nanoparticles Through a Cucurbit[8]uril-Enhanced Radical Cation Dimerization Interaction. , 2015, Angewandte Chemie.

[7]  Yong Chen,et al.  Construction and Functions of Cyclodextrin‐Based 1D Supramolecular Strands and their Secondary Assemblies , 2015, Advanced materials.

[8]  R. Lenobel,et al.  Rotaxanes Capped with Host Molecules: Supramolecular Behavior of Adamantylated Bisimidazolium Salts Containing a Biphenyl Centerpiece. , 2015, Chemistry.

[9]  Yong Chen,et al.  Photocontrolled Reversible Conversion of Nanotube and Nanoparticle Mediated by β-Cyclodextrin Dimers. , 2015, Angewandte Chemie.

[10]  Paul R. McGonigal,et al.  Tunable solid-state fluorescent materials for supramolecular encryption , 2015, Nature Communications.

[11]  D. Qu,et al.  Two Stepwise Synthetic Routes toward a Hetero[4]rotaxane. , 2015, The Journal of organic chemistry.

[12]  H. Zhang,et al.  Light-controlled reversible formation and dissociation of nanorods via interconversion of pseudorotaxanes. , 2015, Chemical communications.

[13]  D. Qu,et al.  A fluorescent bistable [2]rotaxane molecular switch on SiO₂ nanoparticles. , 2015, Chemical communications.

[14]  Feihe Huang,et al.  Development of Pseudorotaxanes and Rotaxanes: From Synthesis to Stimuli-Responsive Motions to Applications. , 2015, Chemical reviews.

[15]  A. Kaifer,et al.  The cucurbituril ‘portal’ effect , 2014 .

[16]  M. F. Mayer,et al.  Synthesis of metalated pseudorotaxane polymers with full control over the average linear density of threaded macrocycles. , 2014, Journal of the American Chemical Society.

[17]  H. Gibson,et al.  Polymeric molecular shuttles: Polypseudorotaxanes & polyrotaxanes based on viologen (paraquat) urethane backbones & bis(p-phenylene)-34-crown-10 , 2014 .

[18]  Zheng Meng,et al.  Tristable [n]rotaxanes: from molecular shuttle to molecular cable car , 2014 .

[19]  Juyoung Yoon,et al.  Construction of hetero[n]rotaxanes by use of polyfunctional rotaxane frameworks. , 2013, The Journal of organic chemistry.

[20]  Hao Li,et al.  Quantitative emergence of hetero[4]rotaxanes by template-directed click chemistry. , 2013, Angewandte Chemie.

[21]  S. Burdette,et al.  Photoisomerization in different classes of azobenzene. , 2012, Chemical Society reviews.

[22]  Andrew A. Beharry,et al.  Azobenzene photoswitching without ultraviolet light. , 2011, Journal of the American Chemical Society.

[23]  Yu Liu,et al.  A twin-axial hetero[7]rotaxane. , 2011, Angewandte Chemie.

[24]  He Tian,et al.  Novel and efficient templates for assembly of rotaxanes and catenanes , 2011 .

[25]  D. Qu,et al.  Coordination-assembly for quantitative construction of bis-branched molecular shuttles. , 2011, Organic & biomolecular chemistry.

[26]  T. Kraus Modified Cyclodextrins with Pendant Cationic and Anionic Moieties as Hosts for Highly Stable Inclusion Complexes and Molecular Recognition , 2011 .

[27]  Ming Jiang,et al.  Photoresponsive pseudopolyrotaxane hydrogels based on competition of host-guest interactions. , 2010, Angewandte Chemie.

[28]  H. Tian,et al.  Bright functional rotaxanes. , 2010, Chemical Society reviews.

[29]  Ian W. Wyman,et al.  Cucurbit[7]uril host-guest complexes with small polar organic guests in aqueous solution. , 2008, Organic & biomolecular chemistry.

[30]  G. P. Moss,et al.  Nomenclature for rotaxanes and pseudorotaxanes (IUPAC Recommendations 2008) , 2008 .

[31]  Michael K. Gilson,et al.  A synthetic host-guest system achieves avidin-biotin affinity by overcoming enthalpy–entropy compensation , 2007, Proceedings of the National Academy of Sciences.

[32]  D. Qu,et al.  A Light‐Driven Pseudo[4]rotaxane Encoded by Induced Circular Dichroism in a Hydrogel , 2007 .

[33]  Francesco Zerbetto,et al.  Synthetic molecular motors and mechanical machines. , 2007, Angewandte Chemie.

[34]  Sang Cheon Lee,et al.  Controlled release of guest molecules from mesoporous silica particles based on a pH-responsive polypseudorotaxane motif. , 2007, Angewandte Chemie.

[35]  Euan R. Kay,et al.  Synthetische molekulare Motoren und mechanische Maschinen , 2007 .

[36]  A. Kaifer,et al.  Electrochemically switchable cucurbit[7]uril-based pseudorotaxanes. , 2006, Organic letters.

[37]  Akira Harada,et al.  Contrast viscosity changes upon photoirradiation for mixtures of poly(acrylic acid)-based alpha-cyclodextrin and azobenzene polymers. , 2006, Journal of the American Chemical Society.

[38]  Xiaogong Wang,et al.  Hyperbranched Azo-Polymers Synthesized by Azo-Coupling Reaction of an AB2 Monomer and Postpolymerization Modification , 2005 .

[39]  A. Kaifer,et al.  Complexation of ferrocene derivatives by the cucurbit[7]uril host: a comparative study of the cucurbituril and cyclodextrin host families. , 2005, Journal of the American Chemical Society.

[40]  Kimoon Kim,et al.  Cucurbiturils–a New Family of Host Molecules , 2004 .

[41]  Jae Wook Lee,et al.  Cucurbituril homologues and derivatives: new opportunities in supramolecular chemistry. , 2003, Accounts of chemical research.

[42]  Y. Ko,et al.  Inclusion of methylviologen in cucurbit[7]uril , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[43]  A. Harada,et al.  Cyclodextrin-based molecular machines. , 2001, Accounts of chemical research.

[44]  J F Stoddart,et al.  Switching devices based on interlocked molecules. , 2001, Accounts of chemical research.

[45]  J. Fraser Stoddart,et al.  Künstliche molekulare Maschinen , 2000 .

[46]  Stoddart,et al.  Artificial Molecular Machines. , 2000, Angewandte Chemie.

[47]  Naoto Tamai,et al.  Ultrafast Dynamics of Photochromic Systems. , 2000, Chemical reviews.

[48]  A. Kaifer,et al.  In situ modification of the surface of gold colloidal particles. Preparation of cyclodextrin-based rotaxanes supported on gold nanospheres , 1998 .

[49]  J. Park,et al.  A Molecular Bowl with Metal Ion as Bottom: Reversible Inclusion of Organic Molecules in Cesium Ion Complexed Cucurbituril , 1998 .

[50]  Jungseok Heo,et al.  Eine molekulare Schüssel mit einem Metallion als Boden: reversibler Einschluß organischer Moleküle in Cs+‐komplexiertes Cucurbituril , 1998 .

[51]  K. A. Connors,et al.  The Stability of Cyclodextrin Complexes in Solution. , 1997, Chemical reviews.

[52]  David J. Williams,et al.  Molecular Meccano. 3. Constitutional and Translational Isomerism in [2]Catenanes and [n]Pseudorotaxanes , 1995 .

[53]  Angel E. Kaifer,et al.  Novel class of asymmetric zwitterionic rotaxanes based on α-cyclodextrin , 1991 .

[54]  A. Harada,et al.  Preparation and properties of cyclodextrin–ferrocene inclusion complexes , 1984 .