Sufficient conditions for variational problems with variable endpoints: Coupled points

In this paper we demonstrate that the notion of coupled points developed in [29] for the variable endpoints variational problems is the analog of that of conjugate points when the endpoints are fixed. We provide weak and strong local optimality criteria using the strengthening of necessary conditions involving both the coupled points and the regularity concepts.

[1]  Vera Zeidan First and second order sufficient conditions for optimal control and the calculus of variations , 1984 .

[2]  David H. Jacobson,et al.  Extensions of Linear-Quadratic Control Theory , 1980 .

[3]  George Leitmann,et al.  The Calculus of Variations and Optimal Control , 1982 .

[4]  V. Zeidan,et al.  Coupled points in the calculus of variations and applications to periodic problems , 1989 .

[5]  P. Hartman Ordinary Differential Equations , 1965 .

[6]  R. Rockafellar Existence theorems for general control problems of Bolza and Lagrange , 1975 .

[7]  T. Teichmann,et al.  The Calculus of Variations , 1963 .

[8]  John M. Ball,et al.  One-dimensional variational problems whose minimizers do not satisfy the Euler-Lagrange equation , 1985 .

[9]  Vera Zeidan,et al.  Sufficiency criteria via focal points and via coupled points , 1992 .

[10]  Vera Zeidan,et al.  Sufficiency and the Jacobi Condition in the Calculus of Variations , 1986, Canadian Journal of Mathematics.

[11]  V. Zeidan Sufficiency conditions with minimal regularity assumptions , 1989 .

[12]  W. Reid,et al.  Riccati Differential Equations , 1975, IEEE Transactions on Systems, Man, and Cybernetics.

[13]  J. Warga A second-order Lagrangian condition for restricted control problems , 1978 .

[14]  Variable end points problems in the calculus of variations: coupled points , 1988 .

[15]  Richard B. Vinter,et al.  Regularity properties of solutions to the basic problem in the calculus of variations , 1985 .

[16]  B. Heimann,et al.  Fleming, W. H./Rishel, R. W., Deterministic and Stochastic Optimal Control. New York‐Heidelberg‐Berlin. Springer‐Verlag. 1975. XIII, 222 S, DM 60,60 , 1979 .

[17]  W. Fleming,et al.  Deterministic and Stochastic Optimal Control , 1975 .

[18]  G. Bliss Lectures on the calculus of variations , 1946 .

[19]  Lamberto Cesari,et al.  Optimization-Theory And Applications , 1983 .

[20]  Oskar Bolza,et al.  Lectures on the calculus of variations , 1905 .

[21]  Hans Sagan,et al.  Introduction to the Calculus of Variations. , 1969 .

[22]  F. Clarke Optimization And Nonsmooth Analysis , 1983 .

[23]  F. Clarke Methods of dynamic and nonsmooth optimization , 1989 .

[24]  On the conditions under which the euler equation or the maximum principle hold , 1984 .

[25]  M. Hestenes Calculus of variations and optimal control theory , 1966 .

[26]  Philip D. Loewen,et al.  An intermediate existence theory in the calculus of variations , 1989 .